Collaborating Authors


Adversarial Learning in the Cyber Security Domain Machine Learning

In recent years, machine learning algorithms, and more specially, deep learning algorithms, have been widely used in many fields, including cyber security. However, machine learning systems are vulnerable to adversarial attacks, and this limits the application of machine learning, especially in non-stationary, adversarial environments, such as the cyber security domain, where actual adversaries (e.g., malware developers) exist. This paper comprehensively summarizes the latest research on adversarial attacks against security solutions that are based on machine learning techniques and presents the risks they pose to cyber security solutions. First, we discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain. Following that, we define a unified taxonomy, where the adversarial attack methods are characterized based on their stage of occurrence, and the attacker's goals and capabilities. Then, we categorize the applications of adversarial attack techniques in the cyber security domain. Finally, we use our taxonomy to shed light on gaps in the cyber security domain that have already been addressed in other adversarial learning domains and discuss their impact on future adversarial learning trends in the cyber security domain.

Adversarial Attacks on Machine Learning Cybersecurity Defences in Industrial Control Systems Machine Learning

The proliferation and application of machine learning based Intrusion Detection Systems (IDS) have allowed for more flexibility and efficiency in the automated detection of cyber attacks in Industrial Control Systems (ICS). However, the introduction of such IDSs has also created an additional attack vector; the learning models may also be subject to cyber attacks, otherwise referred to as Adversarial Machine Learning (AML). Such attacks may have severe consequences in ICS systems, as adversaries could potentially bypass the IDS. This could lead to delayed attack detection which may result in infrastructure damages, financial loss, and even loss of life. This paper explores how adversarial learning can be used to target supervised models by generating adversarial samples using the Jacobian-based Saliency Map attack and exploring classification behaviours. The analysis also includes the exploration of how such samples can support the robustness of supervised models using adversarial training. An authentic power system dataset was used to support the experiments presented herein. Overall, the classification performance of two widely used classifiers, Random Forest and J48, decreased by 16 and 20 percentage points when adversarial samples were present. Their performances improved following adversarial training, demonstrating their robustness towards such attacks.

Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse


Bibliometric analysis and systematic review of AI applied to wastewater treatment. Wastewater treatment technology, economy, management, and reuse were discussed. Prediction accuracy of AI technologies on pollutant removal ranged 0.64–1.00. Application of AI technology could reduce operational costs by up to 30 %. Combined AI methods could provide higher accuracy and lower error. Wastewater treatment is an important step for pollutant reduction and the promotion of water environment quality.

Multi-View Fuzzy Clustering with The Alternative Learning between Shared Hidden Space and Partition Artificial Intelligence

As the multi-view data grows in the real world, multi-view clus-tering has become a prominent technique in data mining, pattern recognition, and machine learning. How to exploit the relation-ship between different views effectively using the characteristic of multi-view data has become a crucial challenge. Aiming at this, a hidden space sharing multi-view fuzzy clustering (HSS-MVFC) method is proposed in the present study. This method is based on the classical fuzzy c-means clustering model, and obtains associ-ated information between different views by introducing shared hidden space. Especially, the shared hidden space and the fuzzy partition can be learned alternatively and contribute to each other. Meanwhile, the proposed method uses maximum entropy strategy to control the weights of different views while learning the shared hidden space. The experimental result shows that the proposed multi-view clustering method has better performance than many related clustering methods.

Multi-view Clustering with the Cooperation of Visible and Hidden Views Artificial Intelligence

Multi-view data are becoming common in real-world modeling tasks and many multi-view data clustering algorithms have thus been proposed. The existing algorithms usually focus on the cooperation of different views in the original space but neglect the influence of the hidden information among these different visible views, or they only consider the hidden information between the views. The algorithms are therefore not efficient since the available information is not fully excavated, particularly the otherness information in different views and the consistency information between them. In practice, the otherness and consistency information in multi-view data are both very useful for effective clustering analyses. In this study, a Multi-View clustering algorithm developed with the Cooperation of Visible and Hidden views, i.e., MV-Co-VH, is proposed. The MV-Co-VH algorithm first projects the multiple views from different visible spaces to the common hidden space by using the non-negative matrix factorization (NMF) strategy to obtain the common hidden view data. Collaborative learning is then implemented in the clustering procedure based on the visible views and the shared hidden view. The results of extensive experiments on UCI multi-view datasets and real-world image multi-view datasets show that the clustering performance of the proposed algorithm is competitive with or even better than that of the existing algorithms.

Prediction of Construction Cost for Field Canals Improvement Projects in Egypt Artificial Intelligence

Field canals improvement projects (FCIPs) are one of the ambitious projects constructed to save fresh water. To finance this project, Conceptual cost models are important to accurately predict preliminary costs at the early stages of the project. The first step is to develop a conceptual cost model to identify key cost drivers affecting the project. Therefore, input variables selection remains an important part of model development, as the poor variables selection can decrease model precision. The study discovered the most important drivers of FCIPs based on a qualitative approach and a quantitative approach. Subsequently, the study has developed a parametric cost model based on machine learning methods such as regression methods, artificial neural networks, fuzzy model and case-based reasoning.

An Exploratory Analysis of Biased Learners in Soft-Sensing Frames Machine Learning

Data driven soft sensor design has recently gained immense popularity, due to advances in sensory devices, and a growing interest in data mining. While partial least squares (PLS) is traditionally used in the process literature for designing soft sensors, the statistical literature has focused on sparse learners, such as Lasso and relevance vector machine (RVM), to solve the high dimensional data problem. In the current study, predictive performances of three regression techniques, PLS, Lasso and RVM were assessed and compared under various offline and online soft sensing scenarios applied on datasets from five real industrial plants, and a simulated process. In offline learning, predictions of RVM and Lasso were found to be superior to those of PLS when a large number of time-lagged predictors were used. Online prediction results gave a slightly more complicated picture. It was found that the minimum prediction error achieved by PLS under moving window (MW), or just-in-time learning scheme was decreased up to ~5-10% using Lasso, or RVM. However, when a small MW size was used, or the optimum number of PLS components was as low as ~1, prediction performance of PLS surpassed RVM, which was found to yield occasional unstable predictions. PLS and Lasso models constructed via online parameter tuning generally did not yield better predictions compared to those constructed via offline tuning. We present evidence to suggest that retaining a large portion of the available process measurement data in the predictor matrix, instead of preselecting variables, would be more advantageous for sparse learners in increasing prediction accuracy. As a result, Lasso is recommended as a better substitute for PLS in soft sensors; while performance of RVM should be validated before online application.

Unsupervised Contextual Anomaly Detection using Joint Deep Variational Generative Models Machine Learning

Often these processes result in highly dimensional data sets, with complex relationships within the data and exhibit stochastic behavior. Furthermore the anomalies by definition contain high self-information measure and therefore carry useful information about the underlying data generation process. There exist a number of similar definitions of what an anomaly is however in this paper the following definition is adopted [11]: 1. Anomalies are different from the norm in respect to their attributes.