Collaborating Authors


Modular Design Patterns for Hybrid Learning and Reasoning Systems: a taxonomy, patterns and use cases Artificial Intelligence

The unification of statistical (data-driven) and symbolic (knowledge-driven) methods is widely recognised as one of the key challenges of modern AI. Recent years have seen large number of publications on such hybrid neuro-symbolic AI systems. That rapidly growing literature is highly diverse and mostly empirical, and is lacking a unifying view of the large variety of these hybrid systems. In this paper we analyse a large body of recent literature and we propose a set of modular design patterns for such hybrid, neuro-symbolic systems. We are able to describe the architecture of a very large number of hybrid systems by composing only a small set of elementary patterns as building blocks. The main contributions of this paper are: 1) a taxonomically organised vocabulary to describe both processes and data structures used in hybrid systems; 2) a set of 15+ design patterns for hybrid AI systems, organised in a set of elementary patterns and a set of compositional patterns; 3) an application of these design patterns in two realistic use-cases for hybrid AI systems. Our patterns reveal similarities between systems that were not recognised until now. Finally, our design patterns extend and refine Kautz' earlier attempt at categorising neuro-symbolic architectures.

RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems Artificial Intelligence

The development of recommender systems that optimize multi-turn interaction with users, and model the interactions of different agents (e.g., users, content providers, vendors) in the recommender ecosystem have drawn increasing attention in recent years. Developing and training models and algorithms for such recommenders can be especially difficult using static datasets, which often fail to offer the types of counterfactual predictions needed to evaluate policies over extended horizons. To address this, we develop RecSim NG, a probabilistic platform for the simulation of multi-agent recommender systems. RecSim NG is a scalable, modular, differentiable simulator implemented in Edward2 and TensorFlow. It offers: a powerful, general probabilistic programming language for agent-behavior specification; tools for probabilistic inference and latent-variable model learning, backed by automatic differentiation and tracing; and a TensorFlow-based runtime for running simulations on accelerated hardware. We describe RecSim NG and illustrate how it can be used to create transparent, configurable, end-to-end models of a recommender ecosystem, complemented by a small set of simple use cases that demonstrate how RecSim NG can help both researchers and practitioners easily develop and train novel algorithms for recommender systems.

Patterns, predictions, and actions: A story about machine learning Machine Learning

This graduate textbook on machine learning tells a story of how patterns in data support predictions and consequential actions. Starting with the foundations of decision making, we cover representation, optimization, and generalization as the constituents of supervised learning. A chapter on datasets as benchmarks examines their histories and scientific bases. Self-contained introductions to causality, the practice of causal inference, sequential decision making, and reinforcement learning equip the reader with concepts and tools to reason about actions and their consequences. Throughout, the text discusses historical context and societal impact. We invite readers from all backgrounds; some experience with probability, calculus, and linear algebra suffices.

Neural Recursive Belief States in Multi-Agent Reinforcement Learning Artificial Intelligence

In multi-agent reinforcement learning, the problem of learning to act is particularly difficult because the policies of co-players may be heavily conditioned on information only observed by them. On the other hand, humans readily form beliefs about the knowledge possessed by their peers and leverage beliefs to inform decision-making. Such abilities underlie individual success in a wide range of Markov games, from bluffing in Poker to conditional cooperation in the Prisoner's Dilemma, to convention-building in Bridge. Classical methods are usually not applicable to complex domains due to the intractable nature of hierarchical beliefs (i.e. beliefs of other agents' beliefs). We propose a scalable method to approximate these belief structures using recursive deep generative models, and to use the belief models to obtain representations useful to acting in complex tasks. Our agents trained with belief models outperform model-free baselines with equivalent representational capacity using common training paradigms. We also show that higher-order belief models outperform agents with lower-order models.

A Sufficient Statistic for Influence in Structured Multiagent Environments

Journal of Artificial Intelligence Research

Making decisions in complex environments is a key challenge in artificial intelligence (AI). Situations involving multiple decision makers are particularly complex, leading to computational intractability of principled solution methods. A body of work in AI has tried to mitigate this problem by trying to distill interaction to its essence: how does the policy of one agent influence another agent? If we can find more compact representations of such influence, this can help us deal with the complexity, for instance by searching the space of influences rather than the space of policies. However, so far these notions of influence have been restricted in their applicability to special cases of interaction. In this paper we formalize influence-based abstraction (IBA), which facilitates the elimination of latent state factors without any loss in value, for a very general class of problems described as factored partially observable stochastic games (fPOSGs). On the one hand, this generalizes existing descriptions of influence, and thus can serve as the foundation for improvements in scalability and other insights in decision making in complex multiagent settings. On the other hand, since the presence of other agents can be seen as a generalization of single agent settings, our formulation of IBA also provides a sufficient statistic for decision making under abstraction for a single agent. We also give a detailed discussion of the relations to such previous works, identifying new insights and interpretations of these approaches. In these ways, this paper deepens our understanding of abstraction in a wide range of sequential decision making settings, providing the basis for new approaches and algorithms for a large class of problems.

Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design Artificial Intelligence

A wide range of reinforcement learning (RL) problems -- including robustness, transfer learning, unsupervised RL, and emergent complexity -- require specifying a distribution of tasks or environments in which a policy will be trained. However, creating a useful distribution of environments is error prone, and takes a significant amount of developer time and effort. We propose Unsupervised Environment Design (UED) as an alternative paradigm, where developers provide environments with unknown parameters, and these parameters are used to automatically produce a distribution over valid, solvable environments. Existing approaches to automatically generating environments suffer from common failure modes: domain randomization cannot generate structure or adapt the difficulty of the environment to the agent's learning progress, and minimax adversarial training leads to worst-case environments that are often unsolvable. To generate structured, solvable environments for our protagonist agent, we introduce a second, antagonist agent that is allied with the environment-generating adversary. The adversary is motivated to generate environments which maximize regret, defined as the difference between the protagonist and antagonist agent's return. We call our technique Protagonist Antagonist Induced Regret Environment Design (PAIRED). Our experiments demonstrate that PAIRED produces a natural curriculum of increasingly complex environments, and PAIRED agents achieve higher zero-shot transfer performance when tested in highly novel environments.

Graph Signal Recovery Using Restricted Boltzmann Machines Artificial Intelligence

We propose a model-agnostic pipeline to recover graph signals from an expert system by exploiting the content addressable memory property of restricted Boltzmann machine and the representational ability of a neural network. The proposed pipeline requires the deep neural network that is trained on a downward machine learning task with clean data, data which is free from any form of corruption or incompletion. We show that denoising the representations learned by the deep neural networks is usually more effective than denoising the data itself. Although this pipeline can deal with noise in any dataset, it is particularly effective for graph-structured datasets.

Human-in-the-Loop Methods for Data-Driven and Reinforcement Learning Systems Artificial Intelligence

Recent successes combine reinforcement learning algorithms and deep neural networks, despite reinforcement learning not being widely applied to robotics and real world scenarios. This can be attributed to the fact that current state-of-the-art, end-to-end reinforcement learning approaches still require thousands or millions of data samples to converge to a satisfactory policy and are subject to catastrophic failures during training. Conversely, in real world scenarios and after just a few data samples, humans are able to either provide demonstrations of the task, intervene to prevent catastrophic actions, or simply evaluate if the policy is performing correctly. This research investigates how to integrate these human interaction modalities to the reinforcement learning loop, increasing sample efficiency and enabling real-time reinforcement learning in robotics and real world scenarios. This novel theoretical foundation is called Cycle-of-Learning, a reference to how different human interaction modalities, namely, task demonstration, intervention, and evaluation, are cycled and combined to reinforcement learning algorithms. Results presented in this work show that the reward signal that is learned based upon human interaction accelerates the rate of learning of reinforcement learning algorithms and that learning from a combination of human demonstrations and interventions is faster and more sample efficient when compared to traditional supervised learning algorithms. Finally, Cycle-of-Learning develops an effective transition between policies learned using human demonstrations and interventions to reinforcement learning. The theoretical foundation developed by this research opens new research paths to human-agent teaming scenarios where autonomous agents are able to learn from human teammates and adapt to mission performance metrics in real-time and in real world scenarios.

Document-editing Assistants and Model-based Reinforcement Learning as a Path to Conversational AI Artificial Intelligence

Today's voice assistants are fairly limited in their conversational abilities and we look forward to their evolution toward The ambition of AI research is not solely to create intelligent increasing capability. Smart speakers and voice applications artifacts that have the same capabilities as people; are a result of the foundational research that has come to we also seek to enhance our intelligence and, in particular, life in today's consumer products. These systems can complete to build intelligent artifacts that assist in our intellectual simple tasks well: send and read text messages; answer activities. Intelligent assistants are a central component basic informational queries; set timers and calendar of a long history of using computation to improve human entries; set reminders, make lists, and do basic math calculations; activities, dating at least back to the pioneering work control Internet-of-Things-enabled devices such of Douglas Engelbart (1962). Early examples of intelligent as thermostats, lights, alarms, and locks; and tell jokes and assistants include sales assistants (McDermott 1982), stories (Hoy 2018). Although voice assistants have greatly scheduling assistants (Fox and Smith 1984), intelligent tutoring improved in the last few years, when it comes to more complicated systems (Grignetti, Hausmann, and Gould,Anderson, routines, such as rescheduling appointments in a Boyle, and Reiser 1975, 1985), and intelligent assistants for calendar, changing a reservation at a restaurant, or having a software development and maintenance (Winograd, Kaiser, conversation, we are still looking forward to a future where Feiler, and Popovich 1973, 1988). More recent examples assistants are capable of completing these tasks. Are today's of intelligent assistants are e-commerce assistants (Lu and voice systems "conversational"? We say that intelligent assistants Smith 2007), meeting assistants (Tür et al. 2010), and systems are conversational if they are able to recognize and that offer the intelligent capabilities of modern search respond to input; to generate their own input; to deal with

GPT-3 Creative Fiction


What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.