Collaborating Authors


Forecasting: theory and practice Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

What is Machine Learning? A Primer for the Epidemiologist


Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods. Machine learning is a branch of computer science that broadly aims to enable computers to "learn" without being directly programmed (1). It has origins in the artificial intelligence movement of the 1950s and emphasizes practical objectives and applications, particularly prediction and optimization. Computers "learn" in machine learning by improving their performance at tasks through "experience" (2, p. xv). In practice, "experience" usually means fitting to data; hence, there is not a clear boundary between machine learning and statistical approaches. Indeed, whether a given methodology is considered "machine learning" or "statistical" often reflects its history as much as genuine differences, and many algorithms (e.g., least absolute shrinkage and selection operator (LASSO), stepwise regression) may or may not be considered machine learning depending on who you ask. Still, despite methodological similarities, machine learning is philosophically and practically distinguishable. At the liberty of (considerable) oversimplification, machine learning generally emphasizes predictive accuracy over hypothesis-driven inference, usually focusing on large, high-dimensional (i.e., having many covariates) data sets (3, 4). Regardless of the precise distinction between approaches, in practice, machine learning offers epidemiologists important tools. In particular, a growing focus on "Big Data" emphasizes problems and data sets for which machine learning algorithms excel while more commonly used statistical approaches struggle. This primer provides a basic introduction to machine learning with the aim of providing readers a foundation for critically reading studies based on these methods and a jumping-off point for those interested in using machine learning techniques in epidemiologic research.

Review of Low-Voltage Load Forecasting: Methods, Applications, and Recommendations Machine Learning

The increased digitalisation and monitoring of the energy system opens up numerous opportunities % and solutions which can help to decarbonise the energy system. Applications on low voltage (LV), localised networks, such as community energy markets and smart storage will facilitate decarbonisation, but they will require advanced control and management. Reliable forecasting will be a necessary component of many of these systems to anticipate key features and uncertainties. Despite this urgent need, there has not yet been an extensive investigation into the current state-of-the-art of low voltage level forecasts, other than at the smart meter level. This paper aims to provide a comprehensive overview of the landscape, current approaches, core applications, challenges and recommendations. Another aim of this paper is to facilitate the continued improvement and advancement in this area. To this end, the paper also surveys some of the most relevant and promising trends. It establishes an open, community-driven list of the known LV level open datasets to encourage further research and development.

200+ Machine Learning Interview Questions and Answer for 2021


A Machine Learning interview calls for a rigorous interview process where the candidates are judged on various aspects such as technical and programming skills, knowledge of methods and clarity of basic concepts. If you aspire to apply for machine learning jobs, it is crucial to know what kind of interview questions generally recruiters and hiring managers may ask. This is an attempt to help you crack the machine learning interviews at major product based companies and start-ups. Usually, machine learning interviews at major companies require a thorough knowledge of data structures and algorithms. In the upcoming series of articles, we shall start from the basics of concepts and build upon these concepts to solve major interview questions. Machine learning interviews comprise of many rounds, which begin with a screening test. This comprises solving questions either on the white-board, or solving it on online platforms like HackerRank, LeetCode etc. Here, we have compiled a list of ...

A review of machine learning applications in wildfire science and management Machine Learning

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.

XGBoostLSS -- An extension of XGBoost to probabilistic forecasting Artificial Intelligence

We propose a new framework of XGBoost that predicts the entire conditional distribution of a univariate response variable. In particular, XGBoostLSS models all moments of a parametric distribution, i.e., mean, location, scale and shape (LSS), instead of the conditional mean only. Choosing from a wide range of continuous, discrete and mixed discrete-continuous distribution, modelling and predicting the entire conditional distribution greatly enhances the flexibility of XGBoost, as it allows to gain additional insight into the data generating process, as well as to create probabilistic forecasts from which prediction intervals and quantiles of interest can be derived. We present both a simulation study and real world examples that demonstrate the benefits of our approach.

Gradient tree boosting with random output projections for multi-label classification and multi-output regression Machine Learning

Multi-output supervised learning aims to model input-output relationships from observations of inputoutput pairs whenever the output space is a vector of random variables. Multi-output classification and regression tasks have numerous applications in domains ranging from biology to multimedia, and recent applications in this area correspond to very high dimensional output spaces (Agrawal et al, 2013; Dekel and Shamir, 2010). Classification and regression trees (Breiman et al, 1984) are popular supervised learning methods that provide state-of-the-art performance when exploited in the context of ensemble methods, namely Random forests (Breiman, 2001; Geurts et al, 2006) and Boosting (Freund and Schapire, 1997; Friedman, 2001). Classification and regression trees can obviously be exploited to handle multi-output problems. The most straightforward way to address multi-output tasks is to apply standard single output methods separately and independently on each output. Although simple, this method, called binary relevance (Tsoumakas et al, 2009) in multi-label classification or single target (Spyromitros-Xioufis et al, 2012) in multi-output regression is often suboptimal as it does not exploit potential correlations that might exist between the outputs. Tree ensemble methods have however been explicitely extended by several authors to the joint prediction of multiple outputs (e.g., Segal, 1992; Blockeel et al, 2000). These extensions build a single tree to predict all outputs at once. They adapt the score measure used to assess splits during the tree growth to take into account all outputs and label each tree leaf with a vector of values, one for each output.

Optimizing Prediction Intervals by Tuning Random Forest via Meta-Validation Machine Learning

Recent studies have shown that tuning prediction models increases prediction accuracy and that Random Forest can be used to construct prediction intervals. However, to our best knowledge, no study has investigated the need to, and the manner in which one can, tune Random Forest for optimizing prediction intervals { this paper aims to fill this gap. We explore a tuning approach that combines an effectively exhaustive search with a validation technique on a single Random Forest parameter. This paper investigates which, out of eight validation techniques, are beneficial for tuning, i.e., which automatically choose a Random Forest configuration constructing prediction intervals that are reliable and with a smaller width than the default configuration. Additionally, we present and validate three meta-validation techniques to determine which are beneficial, i.e., those which automatically chose a beneficial validation technique. This study uses data from our industrial partner (Keymind Inc.) and the Tukutuku Research Project, related to post-release defect prediction and Web application effort estimation, respectively. Results from our study indicate that: i) the default configuration is frequently unreliable, ii) most of the validation techniques, including previously successfully adopted ones such as 50/50 holdout and bootstrap, are counterproductive in most of the cases, and iii) the 75/25 holdout meta-validation technique is always beneficial; i.e., it avoids the likely counterproductive effects of validation techniques.

Exploiting random projections and sparsity with random forests and gradient boosting methods -- Application to multi-label and multi-output learning, random forest model compression and leveraging input sparsity Machine Learning

Within machine learning, the supervised learning field aims at modeling the input-output relationship of a system, from past observations of its behavior. Decision trees characterize the input-output relationship through a series of nested $if-then-else$ questions, the testing nodes, leading to a set of predictions, the leaf nodes. Several of such trees are often combined together for state-of-the-art performance: random forest ensembles average the predictions of randomized decision trees trained independently in parallel, while tree boosting ensembles train decision trees sequentially to refine the predictions made by the previous ones. The emergence of new applications requires scalable supervised learning algorithms in terms of computational power and memory space with respect to the number of inputs, outputs, and observations without sacrificing accuracy. In this thesis, we identify three main areas where decision tree methods could be improved for which we provide and evaluate original algorithmic solutions: (i) learning over high dimensional output spaces, (ii) learning with large sample datasets and stringent memory constraints at prediction time and (iii) learning over high dimensional sparse input spaces.