Early-Phase Performance-Driven Design using Generative Models Artificial Intelligence

Current performance-driven building design methods are not widely adopted outside the research field for several reasons that make them difficult to integrate into a typical design process. In the early design phase, in particular, the time-intensity and the cognitive load associated with optimization and form parametrization are incompatible with design exploration, which requires quick iteration. This research introduces a novel method for performance-driven geometry generation that can afford interaction directly in the 3d modeling environment, eliminating the need for explicit parametrization, and is multiple orders faster than the equivalent form optimization. The method uses Machine Learning techniques to train a generative model offline. The generative model learns a distribution of optimal performing geometries and their simulation contexts based on a dataset that addresses the performance(s) of interest. By navigating the generative model's latent space, geometries with the desired characteristics can be quickly generated. A case study is presented, demonstrating the generation of a synthetic dataset and the use of a Variational Autoencoder (VAE) as a generative model for geometries with optimal solar gain. The results show that the VAE-generated geometries perform on average at least as well as the optimized ones, suggesting that the introduced method shows a feasible path towards more intuitive and interactive early-phase performance-driven design assistance.

An efficient Lagrangian-based heuristic to solve a multi-objective sustainable supply chain problem Artificial Intelligence

Sustainable Supply Chain (SSC) management aims at integrating economic, environmental and social goals to assist in the long-term planning of a company and its supply chains. There is no consensus in the literature as to whether social and environmental responsibilities are profit-compatible. However, the conflicting nature of these goals is explicit when considering specific assessment measures and, in this scenario, multi-objective optimization is a way to represent problems that simultaneously optimize the goals. This paper proposes a Lagrangian matheuristic method, called $AugMathLagr$, to solve a hard and relevant multi-objective problem found in the literature. $AugMathLagr$ was extensively tested using artificial instances defined by a generator presented in this paper. The results show a competitive performance of $AugMathLagr$ when compared with an exact multi-objective method limited by time and a matheuristic recently proposed in the literature and adapted here to address the studied problem. In addition, computational results on a case study are presented and analyzed, and demonstrate the outstanding performance of $AugMathLagr$.

Tackling Climate Change with Machine Learning Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.