Well File:

Results


State of AI Ethics Report (Volume 6, February 2022)

arXiv.org Artificial Intelligence

This report from the Montreal AI Ethics Institute (MAIEI) covers the most salient progress in research and reporting over the second half of 2021 in the field of AI ethics. Particular emphasis is placed on an "Analysis of the AI Ecosystem", "Privacy", "Bias", "Social Media and Problematic Information", "AI Design and Governance", "Laws and Regulations", "Trends", and other areas covered in the "Outside the Boxes" section. The two AI spotlights feature application pieces on "Constructing and Deconstructing Gender with AI-Generated Art" as well as "Will an Artificial Intellichef be Cooking Your Next Meal at a Michelin Star Restaurant?". Given MAIEI's mission to democratize AI, submissions from external collaborators have featured, such as pieces on the "Challenges of AI Development in Vietnam: Funding, Talent and Ethics" and using "Representation and Imagination for Preventing AI Harms". The report is a comprehensive overview of what the key issues in the field of AI ethics were in 2021, what trends are emergent, what gaps exist, and a peek into what to expect from the field of AI ethics in 2022. It is a resource for researchers and practitioners alike in the field to set their research and development agendas to make contributions to the field of AI ethics.


The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI

arXiv.org Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.


Beyond traditional assumptions in fair machine learning

arXiv.org Artificial Intelligence

After challenging the validity of these assumptions in real-world applications, we propose ways to move forward when they are violated. First, we show that group fairness criteria purely based on statistical properties of observed data are fundamentally limited. Revisiting this limitation from a causal viewpoint we develop a more versatile conceptual framework, causal fairness criteria, and first algorithms to achieve them. We also provide tools to analyze how sensitive a believed-to-be causally fair algorithm is to misspecifications of the causal graph. Second, we overcome the assumption that sensitive data is readily available in practice. To this end we devise protocols based on secure multi-party computation to train, validate, and contest fair decision algorithms without requiring users to disclose their sensitive data or decision makers to disclose their models. Finally, we also accommodate the fact that outcome labels are often only observed when a certain decision has been made. We suggest a paradigm shift away from training predictive models towards directly learning decisions to relax the traditional assumption that labels can always be recorded. The main contribution of this thesis is the development of theoretically substantiated and practically feasible methods to move research on fair machine learning closer to real-world applications.


Audits as Evidence: Experiments, Ensembles, and Enforcement

arXiv.org Machine Learning

We develop tools for utilizing correspondence experiments to detect illegal discrimination by individual employers. Employers violate US employment law if their propensity to contact applicants depends on protected characteristics such as race or sex. We establish identification of higher moments of the causal effects of protected characteristics on callback rates as a function of the number of fictitious applications sent to each job ad. These moments are used to bound the fraction of jobs that illegally discriminate. Applying our results to three experimental datasets, we find evidence of significant employer heterogeneity in discriminatory behavior, with the standard deviation of gaps in job-specific callback probabilities across protected groups averaging roughly twice the mean gap. In a recent experiment manipulating racially distinctive names, we estimate that at least 85% of jobs that contact both of two white applications and neither of two black applications are engaged in illegal discrimination. To assess the tradeoff between type I and II errors presented by these patterns, we consider the performance of a series of decision rules for investigating suspicious callback behavior under a simple two-type model that rationalizes the experimental data. Though, in our preferred specification, only 17% of employers are estimated to discriminate on the basis of race, we find that an experiment sending 10 applications to each job would enable accurate detection of 7-10% of discriminators while falsely accusing fewer than 0.2% of non-discriminators. A minimax decision rule acknowledging partial identification of the joint distribution of callback rates yields higher error rates but more investigations than our baseline two-type model. Our results suggest illegal labor market discrimination can be reliably monitored with relatively small modifications to existing audit designs.


Fairness in Algorithmic Decision Making: An Excursion Through the Lens of Causality

arXiv.org Machine Learning

As virtually all aspects of our lives are increasingly impacted by algorithmic decision making systems, it is incumbent upon us as a society to ensure such systems do not become instruments of unfair discrimination on the basis of gender, race, ethnicity, religion, etc. We consider the problem of determining whether the decisions made by such systems are discriminatory, through the lens of causal models. We introduce two definitions of group fairness grounded in causality: fair on average causal effect (FACE), and fair on average causal effect on the treated (FACT). We use the Rubin-Neyman potential outcomes framework for the analysis of cause-effect relationships to robustly estimate FACE and FACT. We demonstrate the effectiveness of our proposed approach on synthetic data. Our analyses of two real-world data sets, the Adult income data set from the UCI repository (with gender as the protected attribute), and the NYC Stop and Frisk data set (with race as the protected attribute), show that the evidence of discrimination obtained by FACE and FACT, or lack thereof, is often in agreement with the findings from other studies. We further show that FACT, being somewhat more nuanced compared to FACE, can yield findings of discrimination that differ from those obtained using FACE.


Discrimination in the Age of Algorithms

arXiv.org Artificial Intelligence

But the ambiguity of human decision-making often makes it extraordinarily hard for the legal system to know whether anyone has actually discriminated. To understand how algorithms affect discrimination, we must therefore also understand how they affect the problem of detecting discrimination. By one measure, algorithms are fundamentally opaque, not just cognitively but even mathematically. Yet for the task of proving discrimination, processes involving algorithms can provide crucial forms of transparency that are otherwise unavailable. These benefits do not happen automatically. But with appropriate requirements in place, the use of algorithms will make it possible to more easily examine and interrogate the entire decision process, thereby making it far easier to know whether discrimination has occurred. By forcing a new level of specificity, the use of algorithms also highlights, and makes transparent, central tradeoffs among competing values. Algorithms are not only a threat to be regulated; with the right safeguards in place, they have the potential to be a positive force for equity.