Plotting

Results


Machine Learning: Algorithms, Models, and Applications

arXiv.org Artificial Intelligence

Recent times are witnessing rapid development in machine learning algorithm systems, especially in reinforcement learning, natural language processing, computer and robot vision, image processing, speech, and emotional processing and understanding. In tune with the increasing importance and relevance of machine learning models, algorithms, and their applications, and with the emergence of more innovative uses cases of deep learning and artificial intelligence, the current volume presents a few innovative research works and their applications in real world, such as stock trading, medical and healthcare systems, and software automation. The chapters in the book illustrate how machine learning and deep learning algorithms and models are designed, optimized, and deployed. The volume will be useful for advanced graduate and doctoral students, researchers, faculty members of universities, practicing data scientists and data engineers, professionals, and consultants working on the broad areas of machine learning, deep learning, and artificial intelligence.


Large expert-curated database for benchmarking document similarity detection in biomedical literature search

#artificialintelligence

Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations.


Artificial Intelligence in Africa's healthcare: Ethical considerations ORF

#artificialintelligence

Artificial intelligence (AI) can improve various aspects of healthcare. It can help reduce annual expenditure,[1] allow early detection of diseases, provide round-the-clock monitoring for chronic disorders, and help limit the exposure of healthcare professionals in contagious environments. The use of AI in healthcare systems in Africa, in particular, can eliminate inefficiencies such as misdiagnosis, shortage in healthcare workers, and wait and recovery time. However, it is important to safeguard against issues such as privacy breaches, or lack of personalised care and accessibility. The central tenet for an AI framework must be ethics. This brief discusses the benefits and challenges of introducing AI in Africa's healthcare sector and suggests how policymakers can strike a balance between allowing innovation and protecting data. This paper is for ORF's Centre for New Economic Diplomacy (CNED).



Detecting Events and Patterns in Large-Scale User Generated Textual Streams with Statistical Learning Methods

arXiv.org Machine Learning

A vast amount of textual web streams is influenced by events or phenomena emerging in the real world. The social web forms an excellent modern paradigm, where unstructured user generated content is published on a regular basis and in most occasions is freely distributed. The present Ph.D. Thesis deals with the problem of inferring information - or patterns in general - about events emerging in real life based on the contents of this textual stream. We show that it is possible to extract valuable information about social phenomena, such as an epidemic or even rainfall rates, by automatic analysis of the content published in Social Media, and in particular Twitter, using Statistical Machine Learning methods. An important intermediate task regards the formation and identification of features which characterise a target event; we select and use those textual features in several linear, non-linear and hybrid inference approaches achieving a significantly good performance in terms of the applied loss function. By examining further this rich data set, we also propose methods for extracting various types of mood signals revealing how affective norms - at least within the social web's population - evolve during the day and how significant events emerging in the real world are influencing them. Lastly, we present some preliminary findings showing several spatiotemporal characteristics of this textual information as well as the potential of using it to tackle tasks such as the prediction of voting intentions.