Not enough data to create a plot.
Try a different view from the menu above.
Choudhury, Avishek, Renjilian, Emily, Asan, Onur
Objectives-Geriatric clinical care is a multidisciplinary assessment designed to evaluate older patients (age 65 years and above) functional ability, physical health, and cognitive wellbeing. The majority of these patients suffer from multiple chronic conditions and require special attention. Recently, hospitals utilize various artificial intelligence (AI) systems to improve care for elderly patients. The purpose of this systematic literature review is to understand the current use of AI systems, particularly machine learning (ML), in geriatric clinical care for chronic diseases. Materials and Methods-We restricted our search to eight databases, namely PubMed, WorldCat, MEDLINE, ProQuest, ScienceDirect, SpringerLink, Wiley, and ERIC, to analyze research articles published in English between January 2010 and June 2019. We focused on studies that used ML algorithms in the care of geriatrics patients with chronic conditions. Results-We identified 35 eligible studies and classified in three groups-psychological disorder (n=22), eye diseases (n=6), and others (n=7). This review identified the lack of standardized ML evaluation metrics and the need for data governance specific to health care applications. Conclusion- More studies and ML standardization tailored to health care applications are required to confirm whether ML could aid in improving geriatric clinical care.
Artificial intelligence leads the top tweeted terms are the trending industry discussions happening on Twitter by key individuals (influencers) as tracked by the platform. The steps being taken to integrate artificial intelligence (AI) into healthcare and the use of AI techniques in the detection and management of various diseases were popularly discussed in Q2. Rafael Grossmann, a surgeon and clinical innovator, shared an article on two new companies namely Anumana and Lucem Health being launched by healthcare company Mayo Clinic that will collect and analyse patient data gathered from remote monitoring devices and tools to enable early detection and diagnosis of diseases. Mayo Clinic will launch a remote monitoring platform that will enable clinicians and physicians to make quicker and better decisions with the help of the collected and analysed patient data thereby speeding up the diagnosis before symptoms appear. It will also allow patients to take more control of their health and related decisions.
Bommasani, Rishi, Hudson, Drew A., Adeli, Ehsan, Altman, Russ, Arora, Simran, von Arx, Sydney, Bernstein, Michael S., Bohg, Jeannette, Bosselut, Antoine, Brunskill, Emma, Brynjolfsson, Erik, Buch, Shyamal, Card, Dallas, Castellon, Rodrigo, Chatterji, Niladri, Chen, Annie, Creel, Kathleen, Davis, Jared Quincy, Demszky, Dora, Donahue, Chris, Doumbouya, Moussa, Durmus, Esin, Ermon, Stefano, Etchemendy, John, Ethayarajh, Kawin, Fei-Fei, Li, Finn, Chelsea, Gale, Trevor, Gillespie, Lauren, Goel, Karan, Goodman, Noah, Grossman, Shelby, Guha, Neel, Hashimoto, Tatsunori, Henderson, Peter, Hewitt, John, Ho, Daniel E., Hong, Jenny, Hsu, Kyle, Huang, Jing, Icard, Thomas, Jain, Saahil, Jurafsky, Dan, Kalluri, Pratyusha, Karamcheti, Siddharth, Keeling, Geoff, Khani, Fereshte, Khattab, Omar, Kohd, Pang Wei, Krass, Mark, Krishna, Ranjay, Kuditipudi, Rohith, Kumar, Ananya, Ladhak, Faisal, Lee, Mina, Lee, Tony, Leskovec, Jure, Levent, Isabelle, Li, Xiang Lisa, Li, Xuechen, Ma, Tengyu, Malik, Ali, Manning, Christopher D., Mirchandani, Suvir, Mitchell, Eric, Munyikwa, Zanele, Nair, Suraj, Narayan, Avanika, Narayanan, Deepak, Newman, Ben, Nie, Allen, Niebles, Juan Carlos, Nilforoshan, Hamed, Nyarko, Julian, Ogut, Giray, Orr, Laurel, Papadimitriou, Isabel, Park, Joon Sung, Piech, Chris, Portelance, Eva, Potts, Christopher, Raghunathan, Aditi, Reich, Rob, Ren, Hongyu, Rong, Frieda, Roohani, Yusuf, Ruiz, Camilo, Ryan, Jack, Ré, Christopher, Sadigh, Dorsa, Sagawa, Shiori, Santhanam, Keshav, Shih, Andy, Srinivasan, Krishnan, Tamkin, Alex, Taori, Rohan, Thomas, Armin W., Tramèr, Florian, Wang, Rose E., Wang, William, Wu, Bohan, Wu, Jiajun, Wu, Yuhuai, Xie, Sang Michael, Yasunaga, Michihiro, You, Jiaxuan, Zaharia, Matei, Zhang, Michael, Zhang, Tianyi, Zhang, Xikun, Zhang, Yuhui, Zheng, Lucia, Zhou, Kaitlyn, Liang, Percy
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Bronstein, Michael M., Bruna, Joan, Cohen, Taco, Veličković, Petar
The last decade has witnessed an experimental revolution in data science and machine learning, epitomised by deep learning methods. Indeed, many high-dimensional learning tasks previously thought to be beyond reach -- such as computer vision, playing Go, or protein folding -- are in fact feasible with appropriate computational scale. Remarkably, the essence of deep learning is built from two simple algorithmic principles: first, the notion of representation or feature learning, whereby adapted, often hierarchical, features capture the appropriate notion of regularity for each task, and second, learning by local gradient-descent type methods, typically implemented as backpropagation. While learning generic functions in high dimensions is a cursed estimation problem, most tasks of interest are not generic, and come with essential pre-defined regularities arising from the underlying low-dimensionality and structure of the physical world. This text is concerned with exposing these regularities through unified geometric principles that can be applied throughout a wide spectrum of applications. Such a 'geometric unification' endeavour, in the spirit of Felix Klein's Erlangen Program, serves a dual purpose: on one hand, it provides a common mathematical framework to study the most successful neural network architectures, such as CNNs, RNNs, GNNs, and Transformers. On the other hand, it gives a constructive procedure to incorporate prior physical knowledge into neural architectures and provide principled way to build future architectures yet to be invented.
Minot, Joshua R., Cheney, Nicholas, Maier, Marc, Elbers, Danne C., Danforth, Christopher M., Dodds, Peter Sheridan
Medical systems in general, and patient treatment decisions and outcomes in particular, are affected by bias based on gender and other demographic elements. As language models are increasingly applied to medicine, there is a growing interest in building algorithmic fairness into processes impacting patient care. Much of the work addressing this question has focused on biases encoded in language models -- statistical estimates of the relationships between concepts derived from distant reading of corpora. Building on this work, we investigate how word choices made by healthcare practitioners and language models interact with regards to bias. We identify and remove gendered language from two clinical-note datasets and describe a new debiasing procedure using BERT-based gender classifiers. We show minimal degradation in health condition classification tasks for low- to medium-levels of bias removal via data augmentation. Finally, we compare the bias semantically encoded in the language models with the bias empirically observed in health records. This work outlines an interpretable approach for using data augmentation to identify and reduce the potential for bias in natural language processing pipelines.
Yang, Guang, Ye, Qinghao, Xia, Jun
Explainable Artificial Intelligence (XAI) is an emerging research topic of machine learning aimed at unboxing how AI systems' black-box choices are made. This research field inspects the measures and models involved in decision-making and seeks solutions to explain them explicitly. Many of the machine learning algorithms can not manifest how and why a decision has been cast. This is particularly true of the most popular deep neural network approaches currently in use. Consequently, our confidence in AI systems can be hindered by the lack of explainability in these black-box models. The XAI becomes more and more crucial for deep learning powered applications, especially for medical and healthcare studies, although in general these deep neural networks can return an arresting dividend in performance. The insufficient explainability and transparency in most existing AI systems can be one of the major reasons that successful implementation and integration of AI tools into routine clinical practice are uncommon. In this study, we first surveyed the current progress of XAI and in particular its advances in healthcare applications. We then introduced our solutions for XAI leveraging multi-modal and multi-centre data fusion, and subsequently validated in two showcases following real clinical scenarios. Comprehensive quantitative and qualitative analyses can prove the efficacy of our proposed XAI solutions, from which we can envisage successful applications in a broader range of clinical questions.
Alizadehsani, Roohallah, Roshanzamir, Mohamad, Hussain, Sadiq, Khosravi, Abbas, Koohestani, Afsaneh, Zangooei, Mohammad Hossein, Abdar, Moloud, Beykikhoshk, Adham, Shoeibi, Afshin, Zare, Assef, Panahiazar, Maryam, Nahavandi, Saeid, Srinivasan, Dipti, Atiya, Amir F., Acharya, U. Rajendra
Understanding data and reaching valid conclusions are of paramount importance in the present era of big data. Machine learning and probability theory methods have widespread application for this purpose in different fields. One critically important yet less explored aspect is how data and model uncertainties are captured and analyzed. Proper quantification of uncertainty provides valuable information for optimal decision making. This paper reviewed related studies conducted in the last 30 years (from 1991 to 2020) in handling uncertainties in medical data using probability theory and machine learning techniques. Medical data is more prone to uncertainty due to the presence of noise in the data. So, it is very important to have clean medical data without any noise to get accurate diagnosis. The sources of noise in the medical data need to be known to address this issue. Based on the medical data obtained by the physician, diagnosis of disease, and treatment plan are prescribed. Hence, the uncertainty is growing in healthcare and there is limited knowledge to address these problems. We have little knowledge about the optimal treatment methods as there are many sources of uncertainty in medical science. Our findings indicate that there are few challenges to be addressed in handling the uncertainty in medical raw data and new models. In this work, we have summarized various methods employed to overcome this problem. Nowadays, application of novel deep learning techniques to deal such uncertainties have significantly increased.
Shi, Zheyuan Ryan, Wang, Claire, Fang, Fei
Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.
Yu, Chao, Liu, Jiming, Nemati, Shamim
As a subfield of machine learning, \emph{reinforcement learning} (RL) aims at empowering one's capabilities in behavioural decision making by using interaction experience with the world and an evaluative feedback. Unlike traditional supervised learning methods that usually rely on one-shot, exhaustive and supervised reward signals, RL tackles with sequential decision making problems with sampled, evaluative and delayed feedback simultaneously. Such distinctive features make RL technique a suitable candidate for developing powerful solutions in a variety of healthcare domains, where diagnosing decisions or treatment regimes are usually characterized by a prolonged and sequential procedure. This survey will discuss the broad applications of RL techniques in healthcare domains, in order to provide the research community with systematic understanding of theoretical foundations, enabling methods and techniques, existing challenges, and new insights of this emerging paradigm. By first briefly examining theoretical foundations and key techniques in RL research from efficient and representational directions, we then provide an overview of RL applications in a variety of healthcare domains, ranging from dynamic treatment regimes in chronic diseases and critical care, automated medical diagnosis from both unstructured and structured clinical data, as well as many other control or scheduling domains that have infiltrated many aspects of a healthcare system. Finally, we summarize the challenges and open issues in current research, and point out some potential solutions and directions for future research.
Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.