Plotting

Results


Forecasting: theory and practice

arXiv.org Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.


"Dave...I can assure you...that it's going to be all right..." -- A definition, case for, and survey of algorithmic assurances in human-autonomy trust relationships

arXiv.org Machine Learning

As technology becomes more advanced, those who design, use and are otherwise affected by it want to know that it will perform correctly, and understand why it does what it does, and how to use it appropriately. In essence they want to be able to trust the systems that are being designed. In this survey we present assurances that are the method by which users can understand how to trust autonomous systems. Trust between humans and autonomy is reviewed, and the implications for the design of assurances are highlighted. A survey of existing research related to assurances is presented. Much of the surveyed research originates from fields such as interpretable, comprehensible, transparent, and explainable machine learning, as well as human-computer interaction, human-robot interaction, and e-commerce. Several key ideas are extracted from this work in order to refine the definition of assurances. The design of assurances is found to be highly dependent not only on the capabilities of the autonomous system, but on the characteristics of the human user, and the appropriate trust-related behaviors. Several directions for future research are identified and discussed.