Goto

Collaborating Authors

Results


A Comprehensive Framework for Learning Declarative Action Models

Journal of Artificial Intelligence Research

A declarative action model is a compact representation of the state transitions of dynamic systems that generalizes over world objects. The specification of declarative action models is often a complex hand-crafted task. In this paper we formulate declarative action models via state constraints, and present the learning of such models as a combinatorial search. The comprehensive framework presented here allows us to connect the learning of declarative action models to well-known problem solving tasks. In addition, our framework allows us to characterize the existing work in the literature according to four dimensions: (1) the target action models, in terms of the state transitions they define; (2) the available learning examples; (3) the functions used to guide the learning process, and to evaluate the quality of the learned action models; (4) the learning algorithm. Last, the paper lists relevant successful applications of the learning of declarative actions models and discusses some open challenges with the aim of encouraging future research work.


Long-Time Convergence and Propagation of Chaos for Nonlinear MCMC

arXiv.org Machine Learning

In this paper, we study the long-time convergence and uniform strong propagation of chaos for a class of nonlinear Markov chains for Markov chain Monte Carlo (MCMC). Our technique is quite simple, making use of recent contraction estimates for linear Markov kernels and basic techniques from Markov theory and analysis. Moreover, the same proof strategy applies to both the long-time convergence and propagation of chaos. We also show, via some experiments, that these nonlinear MCMC techniques are viable for use in real-world high-dimensional inference such as Bayesian neural networks.


Constrained Policy Optimization via Bayesian World Models

arXiv.org Artificial Intelligence

Improving sample-efficiency and safety are crucial challenges when deploying reinforcement learning in high-stakes real world applications. We propose LAMBDA, a novel model-based approach for policy optimization in safety critical tasks modeled via constrained Markov decision processes. Our approach utilizes Bayesian world models, and harnesses the resulting uncertainty to maximize optimistic upper bounds on the task objective, as well as pessimistic upper bounds on the safety constraints. We demonstrate LAMBDA's state of the art performance on the Safety-Gym benchmark suite in terms of sample efficiency and constraint violation.


Fenrir: Physics-Enhanced Regression for Initial Value Problems

arXiv.org Machine Learning

We show how probabilistic numerics can be used to convert an initial value problem into a Gauss--Markov process parametrised by the dynamics of the initial value problem. Consequently, the often difficult problem of parameter estimation in ordinary differential equations is reduced to hyperparameter estimation in Gauss--Markov regression, which tends to be considerably easier. The method's relation and benefits in comparison to classical numerical integration and gradient matching approaches is elucidated. In particular, the method can, in contrast to gradient matching, handle partial observations, and has certain routes for escaping local optima not available to classical numerical integration. Experimental results demonstrate that the method is on par or moderately better than competing approaches.


Probability estimation and structured output prediction for learning preferences in last mile delivery

arXiv.org Artificial Intelligence

We study the problem of learning the preferences of drivers and planners in the context of last mile delivery. Given a data set containing historical decisions and delivery locations, the goal is to capture the implicit preferences of the decision-makers. We consider two ways to use the historical data: one is through a probability estimation method that learns transition probabilities between stops (or zones). This is a fast and accurate method, recently studied in a VRP setting. Furthermore, we explore the use of machine learning to infer how to best balance multiple objectives such as distance, probability and penalties. Specifically, we cast the learning problem as a structured output prediction problem, where training is done by repeatedly calling the TSP solver. Another important aspect we consider is that for last-mile delivery, every address is a potential client and hence the data is very sparse. Hence, we propose a two-stage approach that first learns preferences at the zone level in order to compute a zone routing; after which a penalty-based TSP computes the stop routing. Results show that the zone transition probability estimation performs well, and that the structured output prediction learning can improve the results further. We hence showcase a successful combination of both probability estimation and machine learning, all the while using standard TSP solvers, both during learning and to compute the final solution; this means the methodology is applicable to other, real-life, TSP variants, or proprietary solvers.


Mixed Nondeterministic-Probabilistic Automata: Blending graphical probabilistic models with nondeterminism

arXiv.org Artificial Intelligence

Graphical models in probability and statistics are a core concept in the area of probabilistic reasoning and probabilistic programming-graphical models include Bayesian networks and factor graphs. In this paper we develop a new model of mixed (nondeterministic/probabilistic) automata that subsumes both nondeterministic automata and graphical probabilistic models. Mixed Automata are equipped with parallel composition, simulation relation, and support message passing algorithms inherited from graphical probabilistic models. Segala's Probabilistic Automatacan be mapped to Mixed Automata.


Prospective Learning: Back to the Future

arXiv.org Artificial Intelligence

Research on both natural intelligence (NI) and artificial intelligence (AI) generally assumes that the future resembles the past: intelligent agents or systems (what we call 'intelligence') observe and act on the world, then use this experience to act on future experiences of the same kind. We call this 'retrospective learning'. For example, an intelligence may see a set of pictures of objects, along with their names, and learn to name them. A retrospective learning intelligence would merely be able to name more pictures of the same objects. We argue that this is not what true intelligence is about. In many real world problems, both NIs and AIs will have to learn for an uncertain future. Both must update their internal models to be useful for future tasks, such as naming fundamentally new objects and using these objects effectively in a new context or to achieve previously unencountered goals. This ability to learn for the future we call 'prospective learning'. We articulate four relevant factors that jointly define prospective learning. Continual learning enables intelligences to remember those aspects of the past which it believes will be most useful in the future. Prospective constraints (including biases and priors) facilitate the intelligence finding general solutions that will be applicable to future problems. Curiosity motivates taking actions that inform future decision making, including in previously unmet situations. Causal estimation enables learning the structure of relations that guide choosing actions for specific outcomes, even when the specific action-outcome contingencies have never been observed before. We argue that a paradigm shift from retrospective to prospective learning will enable the communities that study intelligence to unite and overcome existing bottlenecks to more effectively explain, augment, and engineer intelligences.


A Survey of Opponent Modeling in Adversarial Domains

Journal of Artificial Intelligence Research

Opponent modeling is the ability to use prior knowledge and observations in order to predict the behavior of an opponent. This survey presents a comprehensive overview of existing opponent modeling techniques for adversarial domains, many of which must address stochastic, continuous, or concurrent actions, and sparse, partially observable payoff structures. We discuss all the components of opponent modeling systems, including feature extraction, learning algorithms, and strategy abstractions. These discussions lead us to propose a new form of analysis for describing and predicting the evolution of game states over time. We then introduce a new framework that facilitates method comparison, analyze a representative selection of techniques using the proposed framework, and highlight common trends among recently proposed methods. Finally, we list several open problems and discuss future research directions inspired by AI research on opponent modeling and related research in other disciplines.


On robust risk-based active-learning algorithms for enhanced decision support

arXiv.org Machine Learning

Classification models are a fundamental component of physical-asset management technologies such as structural health monitoring (SHM) systems and digital twins. Previous work introduced \textit{risk-based active learning}, an online approach for the development of statistical classifiers that takes into account the decision-support context in which they are applied. Decision-making is considered by preferentially querying data labels according to \textit{expected value of perfect information} (EVPI). Although several benefits are gained by adopting a risk-based active learning approach, including improved decision-making performance, the algorithms suffer from issues relating to sampling bias as a result of the guided querying process. This sampling bias ultimately manifests as a decline in decision-making performance during the later stages of active learning, which in turn corresponds to lost resource/utility. The current paper proposes two novel approaches to counteract the effects of sampling bias: \textit{semi-supervised learning}, and \textit{discriminative classification models}. These approaches are first visualised using a synthetic dataset, then subsequently applied to an experimental case study, specifically, the Z24 Bridge dataset. The semi-supervised learning approach is shown to have variable performance; with robustness to sampling bias dependent on the suitability of the generative distributions selected for the model with respect to each dataset. In contrast, the discriminative classifiers are shown to have excellent robustness to the effects of sampling bias. Moreover, it was found that the number of inspections made during a monitoring campaign, and therefore resource expenditure, could be reduced with the careful selection of the statistical classifiers used within a decision-supporting monitoring system.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.