Goto

Collaborating Authors

University of Technology, Sydney


Liu

AAAI Conferences

Person re-identification (re-ID) tasks aim to identify the same person in multiple images captured from non-overlapping camera views. Most previous re-ID studies have attempted to solve this problem through either representation learning or metric learning, or by combining both techniques. Representation learning relies on the latent factors or attributes of the data. In most of these works, the dimensionality of the factors/attributes has to be manually determined for each new dataset. Thus, this approach is not robust.


Semi-Supervised Bayesian Attribute Learning for Person Re-Identification

AAAI Conferences

Person re-identification (re-ID) tasks aim to identify the same person in multiple images captured from non-overlapping camera views. Most previous re-ID studies have attempted to solve this problem through either representation learning or metric learning, or by combining both techniques. Representation learning relies on the latent factors or attributes of the data. In most of these works, the dimensionality of the factors/attributes has to be manually determined for each new dataset. Thus, this approach is not robust. Metric learning optimizes a metric across the dataset to measure similarity according to distance. However, choosing the optimal method for computing these distances is data dependent, and learning the appropriate metric relies on a sufficient number of pair-wise labels. To overcome these limitations, we propose a novel algorithm for person re-ID, called semi-supervised Bayesian attribute learning. We introduce an Indian Buffet Process to identify the priors of the latent attributes. The dimensionality of attributes factors is then automatically determined by nonparametric Bayesian learning. Meanwhile, unlike traditional distance metric learning, we propose a re-identification probability distribution to describe how likely it is that a pair of images contains the same person. This technique relies solely on the latent attributes of both images. Moreover, pair-wise labels that are not known can be estimated from pair-wise labels that are known, making this a robust approach for semi-supervised learning. Extensive experiments demonstrate the superior performance of our algorithm over several state-of-the-art algorithms on small-scale datasets and comparable performance on large-scale re-ID datasets.


Liu

AAAI Conferences

Feature selection aims to select a small subset from the high-dimensional features which can lead to better learning performance, lower computational complexity, and better model readability. The class imbalance problem has been neglected by traditional feature selection methods, therefore the selected features will be biased towards the majority classes. Because of the superiority of F-measure to accuracy for imbalanced data, we propose to use F-measure as the performance measure for feature selection algorithms. As a pseudo-linear function, the optimization of F-measure can be achieved by minimizing the total costs. In this paper, we present a novel cost-sensitive feature selection (CSFS) method which optimizes F-measure instead of accuracy to take class imbalance issue into account. The features will be selected according to optimal F-measure classifier after solving a series of cost-sensitive feature selection sub-problems. The features selected by our method will fully represent the characteristics of not only majority classes, but also minority classes. Extensive experimental results conducted on synthetic, multi-class and multi-label datasets validate the efficiency and significance of our feature selection method.


Verma

AAAI Conferences

Real world data is usually generated over multiple time periods associated with multiple labels, which can be represented as multiple labeled tensor sequences. These sequences are linked together, sharing some common features while exhibiting their own unique features. Conventional tensor factorization techniques are limited to extract either common or unique features, but not both simultaneously. However, both types of these features are important in many machine learning systems as they inherently affect the systems' performance. In this paper, we propose a novel supervised tensor factorization technique which simultaneously extracts ordered common and unique features. Classification results using features extracted by our method on CIFAR-10 database achieves significantly better performance over other factorization methods, illustrating the effectiveness of the proposed technique.


Xiong

AAAI Conferences

WiFi-SLAM aims to map WiFi signals within an unknown environment while simultaneously determining the location of a mobile device. This localization method has been extensively used in indoor, space, undersea, and underground environments. For the sake of accuracy, most methods label the signal readings against ground truth locations. However, this is impractical in large environments, where it is hard to collect and maintain the data. Some methods use latent variable models to generate latent-space locations of signal strength data, an advantage being that no prior labeling of signal strength readings and their physical locations is required.


Extracting Highly Effective Features for Supervised Learning via Simultaneous Tensor Factorization

AAAI Conferences

Real world data is usually generated over multiple time periods associated with multiple labels, which can be represented as multiple labeled tensor sequences. These sequences are linked together, sharing some common features while exhibiting their own unique features. Conventional tensor factorization techniques are limited to extract either common or unique features, but not both simultaneously. However, both types of these features are important in many machine learning systems as they inherently affect the systems' performance. In this paper, we propose a novel supervised tensor factorization technique which simultaneously extracts ordered common and unique features. Classification results using features extracted by our method on CIFAR-10 database achieves significantly better performance over other factorization methods, illustrating the effectiveness of the proposed technique.


A Diversified Generative Latent Variable Model for WiFi-SLAM

AAAI Conferences

WiFi-SLAM aims to map WiFi signals within an unknown environment while simultaneously determining the location of a mobile device. This localization method has been extensively used in indoor, space, undersea, and underground environments. For the sake of accuracy, most methods label the signal readings against ground truth locations. However, this is impractical in large environments, where it is hard to collect and maintain the data. Some methods use latent variable models to generate latent-space locations of signal strength data, an advantage being that no prior labeling of signal strength readings and their physical locations is required. However, the generated latent variables cannot cover all wireless signal locations and WiFi-SLAM performance is significantly degraded. Here we propose the diversified generative latent variable model (DGLVM) to overcome these limitations. By building a positive-definite kernel function, a diversity-encouraging prior is introduced to render the generated latent variables non-overlapping, thus capturing more wireless signal measurements characteristics. The defined objective function is then solved by variational inference. Our experiments illustrate that the method performs WiFi localization more accurately than other label-free methods.


Cost-Sensitive Feature Selection via F-Measure Optimization Reduction

AAAI Conferences

Feature selection aims to select a small subset from the high-dimensional features which can lead to better learning performance, lower computational complexity, and better model readability. The class imbalance problem has been neglected by traditional feature selection methods, therefore the selected features will be biased towards the majority classes. Because of the superiority of F-measure to accuracy for imbalanced data, we propose to use F-measure as the performance measure for feature selection algorithms. As a pseudo-linear function, the optimization of F-measure can be achieved by minimizing the total costs. In this paper, we present a novel cost-sensitive feature selection (CSFS) method which optimizes F-measure instead of accuracy to take class imbalance issue into account. The features will be selected according to optimal F-measure classifier after solving a series of cost-sensitive feature selection sub-problems. The features selected by our method will fully represent the characteristics of not only majority classes, but also minority classes. Extensive experimental results conducted on synthetic, multi-class and multi-label datasets validate the efficiency and significance of our feature selection method.


Reward from Demonstration in Interactive Reinforcement Learning

AAAI Conferences

In reinforcement learning (RL), reward shaping is used to show the desirable behavior by assigning positive or negative reward for learner’s preceding action. However, for reward shaping through human-generated rewards, an important aspect is to make it approachable to humans. Typically, a human teacher’s role requires being watchful of agent’s action to assign judgmental feedback based on prior knowledge. It can be a mentally tough and unpleasant exercise especially for lengthy teaching sessions. We present a method, Shaping from Interactive Demonstrations (SfID), which instead of judgmental reward takes action label from human. Therefore, it simplifies the teacher’s role to demonstrating the action to select from a state. We compare SfID with a standard reward shaping approach on Sokoban domain. The results show the competitiveness of SfID with the standard reward shaping.


Zhou

AAAI Conferences

In this paper we theoretically study the minimum Differentially Resolving Set (DRS) problem derived from the classical sensor placement optimization problem in network source locating. A DRS of a graph G (V, E) is defined as a subset S V where any two elements in V can be distinguished by their different differential characteristic sets defined on S. The minimum DRS problem aims to find a DRS S in the graph G with minimum total weight Σv S w(v). In this paper we establish a group of Integer Linear Programming (ILP) models as the solution. By the weighted set cover theory, we propose an approximation algorithm with the Θ(ln n) approximability for the minimum DRS problem on general graphs, where n is the graph size.