Goto

Collaborating Authors

Pacific Northwest National Laboratory


Interactive Machine Learning at Scale With CHISSL

AAAI Conferences

We demonstrate CHISSL a scalable client-server system for real-time interactive machine learning. Our system is capable of incorporating user feedback incrementally and immediately without a pre-defined prediction task. Computation is partitioned between a lightweight web-client and a heavyweight server. The server relies on representation learning and off-the-shelf agglomerative clustering to find a dendrogram, which we use to quickly approximate distances in the representation space. The client, using only this dendrogram, incorporates user feedback via transduction. Distances and predictions for each unlabeled instance are updated incrementally and deterministically, with O(n) space and time complexity. Our algorithm is implemented in a functional prototype, designed to be easy to use by non-experts. The prototype organizes the large amounts of data into recommendations. This allows the user to interact with actual instances by dragging and dropping to provide feedback in an intuitive manner. We applied CHISSL to several domains including cyber, social media, and geo-temporal analysis.


Predicting User Roles from Computer Logs Using Recurrent Neural Networks

AAAI Conferences

Network and other computer administrators typically have access to a rich set of logs tracking actions by users. However, they often lack metadata such as user role, age, and gender that can provide valuable context for users' actions. Inferring user attributes automatically has wide ranging implications; among others, for customization (anticipating user needs and priorities), for managing resources (anticipating demand) and for security (interpreting anomalous behavior).


Inquire Biology: A Textbook that Answers Questions

AI Magazine

Inquire Biology is a prototype of a new kind of intelligent textbook -- one that answers students' questions, engages their interest, and improves their understanding. Inquire Biology provides unique capabilities via a knowledge representation that captures conceptual knowledge from the textbook and uses inference procedures to answer students' questions. In an initial controlled experiment, community college students using the Inquire Biology prototype outperformed students using either a hardcopy or conventional E-book version of the same biology textbook. While additional research is needed to fully develop Inquire Biology, the initial prototype clearly demonstrates the promise of applying knowledge representation and question-answering technology to electronic textbooks.


Inquire Biology: A Textbook that Answers Questions

AI Magazine

Inquire Biology is a prototype of a new kind of intelligent textbook — one that answers students’ questions, engages their interest, and improves their understanding. Inquire Biology provides unique capabilities via a knowledge representation that captures conceptual knowledge from the textbook and uses inference procedures to answer students’ questions. Students ask questions by typing free-form natural language queries or by selecting passages of text. The system then attempts to answer the question and also generates suggested questions related to the query or selection. The questions supported by the system were chosen to be educationally useful, for example: what is the structure of X? compare X and Y? how does X relate to Y? In user studies, students found this question-answering capability to be extremely useful while reading and while doing problem solving. In an initial controlled experiment, community college students using the Inquire Biology prototype outperformed students using either a hardcopy or conventional E-book version of the same biology textbook. While additional research is needed to fully develop Inquire Biology, the initial prototype clearly demonstrates the promise of applying knowledge representation and question-answering technology to electronic textbooks.


Reports of the AAAI 2009 Spring Symposia

AI Magazine

The titles of the nine symposia were Agents that Learn from Human Teachers, Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, Experimental Design for Real-World Systems, Human Behavior Modeling, Intelligent Event Processing, Intelligent Narrative Technologies II, Learning by Reading and Learning to Read, Social Semantic Web: Where Web 2.0 Meets Web 3.0, and Technosocial Predictive Analytics. The aim of the Benchmarking of Qualitative Spatial and Temporal Reasoning Systems symposium was to initiate the development of a problem repository in the field of qualitative spatial and temporal reasoning and identify a graded set of challenges for future midterm and long-term research. The Intelligent Event Processing symposium discussed the need for more AI-based approaches in event processing and defined a kind of research agenda for the field, coined as intelligent complex event processing (iCEP). The Intelligent Narrative Technologies II AAAI symposium discussed innovations, progress, and novel techniques in the research domain.


Reports of the AAAI 2009 Spring Symposia

AI Magazine

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, was pleased to present the 2009 Spring Symposium Series, held Monday through Wednesday, March 23–25, 2009 at Stanford University. The titles of the nine symposia were Agents that Learn from Human Teachers, Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, Experimental Design for Real-World Systems, Human Behavior Modeling, Intelligent Event Processing, Intelligent Narrative Technologies II, Learning by Reading and Learning to Read, Social Semantic Web: Where Web 2.0 Meets Web 3.0, and Technosocial Predictive Analytics. The goal of the Agents that Learn from Human Teachers was to investigate how we can enable software and robotics agents to learn from real-time interaction with an everyday human partner. The aim of the Benchmarking of Qualitative Spatial and Temporal Reasoning Systems symposium was to initiate the development of a problem repository in the field of qualitative spatial and temporal reasoning and identify a graded set of challenges for future midterm and long-term research. The Experimental Design symposium discussed the challenges of evaluating AI systems. The Human Behavior Modeling symposium explored reasoning methods for understanding various aspects of human behavior, especially in the context of designing intelligent systems that interact with humans. The Intelligent Event Processing symposium discussed the need for more AI-based approaches in event processing and defined a kind of research agenda for the field, coined as intelligent complex event processing (iCEP). The Intelligent Narrative Technologies II AAAI symposium discussed innovations, progress, and novel techniques in the research domain. The Learning by Reading and Learning to Read symposium explored two aspects of making natural language texts semantically accessible to, and processable by, machines. The Social Semantic Web symposium focused on the real-world grand challenges in this area. Finally, the Technosocial Predictive Analytics symposium explored new methods for anticipatory analytical thinking that provide decision advantage through the integration of human and physical models.