Autonomous Vehicles


Microdrones That Cooperate to Transport Objects Could Be Future of Warehouse Automation

IEEE Spectrum Robotics Channel

Last month, we wrote about autonomous quadrotors from the University of Pennsylvania that use just a VGA camera and an IMU to navigate together in swarms. Without relying on external localization or GPS, quadrotors like these have much more potential to be real-world useful, since they can operate without expensive and complex infrastructure, even indoors.


Video Friday: Honda's Huggable Robot, New Artificial Muscle, and Boeing Cargo Drone

IEEE Spectrum Robotics Channel

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We'll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):


This Autonomous Quadrotor Swarm Doesn't Need GPS

IEEE Spectrum Robotics Channel

The vast majority of the fancy autonomous flying we've seen from quadrotors has relied on some kind of external localization for position information. Usually it's a motion capture system, sometimes it's GPS, but either way, there's a little bit of cheating involved. This is not to say that we mind cheating, but the problem with cheating is that sometimes you can't cheat, and if you want your quadrotors to do tricks where you don't have access to GPS or the necessary motion capture hardware and software, you're out of luck.


Video Friday: Rocket RoboBee, Willow Garage, and Caltech's Cassie

IEEE Spectrum Robotics Channel

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We'll also be posting a weekly calendar of upcoming robotics events for the next two months; here's what we have so far (send us your events!): Let us know if you have suggestions for next week, and enjoy today's videos. A new RoboBee from Harvard can swim underwater, and then launch itself into the air with a microrocket and fly away. At the millimeter scale, the water's surface might as well be a brick wall.


Video Friday: DARPA's LUKE Arm, Human Support Robot, and Starting a Robotics Company

IEEE Spectrum Robotics Channel

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We'll also be posting a weekly calendar of upcoming robotics events for the next two months; here's what we have so far (send us your events!): Let us know if you have suggestions for next week, and enjoy today's videos. Dean Kamen's DEKA R&D firm, with support from DARPA's Revolutionizing Prosthetics Program, designed the advanced prosthetic LUKE Arm to give amputees "dexterous arm and hand movement through a simple, intuitive control system." The LUKE Arm, which stands for Life Under Kinetic Evolution but is also a reference to Luke Skywalker's bionic hand, "allows users to control multiple joints simultaneously and provides a variety of grips and grip forces by means of wireless signals generated by sensors worn on the feet or via other easy-to-use controllers."


Why Rat-Brained Robots Are So Good at Navigating Unfamiliar Terrain

IEEE Spectrum Robotics Channel

If you take a common brown rat and drop it into a lab maze or a subway tunnel, it will immediately begin to explore its surroundings, sniffing around the edges, brushing its whiskers against surfaces, peering around corners and obstacles. After a while, it will return to where it started, and from then on, it will treat the explored terrain as familiar. Roboticists have long dreamed of giving their creations similar navigation skills. To be useful in our environments, robots must be able to find their way around on their own. Some are already learning to do that in homes, offices, warehouses, hospitals, hotels, and, in the case of self-driving cars, entire cities. Despite the progress, though, these robotic platforms still struggle to operate reliably under even mildly challenging conditions.


Video Friday: Brain Scanning Baxter, Burger Flipping Arm, and Elevators with Feelings

IEEE Spectrum Robotics Channel

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We'll also be posting a weekly calendar of upcoming robotics events for the next two months; here's what we have so far (send us your events!): Let us know if you have suggestions for next week, and enjoy today's videos. Communication with a robot using brain activity from a human collaborator could provide a direct and fast feedback loop that is easy and natural for the human, thereby enabling a wide variety of intuitive interaction tasks. This paper explores the application of EEG-measured error-related potentials (ErrPs) to closed-loop robotic control.


Piaggio's Cargo Robot Uses Visual SLAM to Follow You Anywhere

IEEE Spectrum Robotics Channel

Making a fully autonomous delivery robot (whether it's flying or not) is a very hard problem. Your robot has to be prepared to operate all alone in unstructured environments, and it has to do so both reliably and efficiently. A new robot introduced this week by Piaggio Fast Forward (herein abbreviated "PFF"), a division of Italian vehicle manufacturer Piaggio, is getting in on autonomous stuff-moving, but they're taking a slightly different approach. Rather than try to develop a fully autonomous delivery robot from scratch, PFF is instead starting with something simpler: A pleasingly roundish robot called Gita ("gee-tah") that will follow you around, carrying 19 kilograms of tools, groceries, or whatever you want. There are many situations where such a cargo-carrying robot would be handy.


The Self-Driving Car's Bicycle Problem

IEEE Spectrum Robotics Channel

Robotic cars are great at monitoring other cars, and they're getting better at noticing pedestrians, squirrels, and birds. The main challenge, though, is posed by the lightest, quietest, swerviest vehicles on the road. "Bicycles are probably the most difficult detection problem that autonomous vehicle systems face," says UC Berkeley research engineer Steven Shladover. Nuno Vasconcelos, a visual computing expert at the University of California, San Diego, says bikes pose a complex detection problem because they are relatively small, fast and heterogenous. "A car is basically a big block of stuff.


After Mastering Singapore's Streets, NuTonomy's Robo-taxis Are Poised to Take on New Cities

IEEE Spectrum Robotics Channel

Take a short walk through Singapore's city center and you'll cross a helical bridge modeled on the structure of DNA, pass a science museum shaped like a lotus flower, and end up in a towering grove of artificial Supertrees that pulse with light and sound. It's no surprise, then, that this is the first city to host a fleet of autonomous taxis. Since last April, robo-taxis have been exploring the 6 kilometers of roads that make up Singapore's One-North technology business district, and people here have become used to hailing them through a ride-sharing app. Maybe that's why I'm the only person who seems curious when one of the vehicles--a slightly modified Renault Zoe electric car--pulls up outside of a Starbucks. Seated inside the car are an engineer, a safety driver, and Doug Parker, chief operating officer of nuTonomy, the MIT spinout that's behind the project.