Results


Microdrones That Cooperate to Transport Objects Could Be Future of Warehouse Automation

IEEE Spectrum Robotics Channel

Last month, we wrote about autonomous quadrotors from the University of Pennsylvania that use just a VGA camera and an IMU to navigate together in swarms. Without relying on external localization or GPS, quadrotors like these have much more potential to be real-world useful, since they can operate without expensive and complex infrastructure, even indoors. One potential application for drones like these is disaster operations, but honestly, that's just what everyone says when you ask them how their mobile robot could potentially be useful. What's much more interesting to us are commercial applications, and with drones, that inevitably means talking about delivery. There are a lot of reasons why we're skeptical about most commercial delivery drones, but that doesn't meant that the idea of using drones to move things from place to place isn't a good one.


Video Friday: Honda's Huggable Robot, New Artificial Muscle, and Boeing Cargo Drone

IEEE Spectrum Robotics Channel

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We'll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!): Let us know if you have suggestions for next week, and enjoy today's videos. CES isn't really a venue for the launch of flagship robotics products anymore (if it ever was), but we still see some high profile introductions from large companies looking to make a splash. Besides LG, Honda was the other notable, with a couple strange robots (and one kind of familiar looking).


Video Friday: Drone Fireworks, Cozmo Rap, and Justin Timberlake

IEEE Spectrum Robotics Channel

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We'll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!): Let us know if you have suggestions for next week, and enjoy today's videos. You won't want to miss the 2028 Pan-Asian Deep Learning Conference in Kuala Lumpur: Call me a hater if you want, but at least for now, pretty sure that's fake. What's funny, though, is that those first five demos are straight out of the standardized humanoid robot demo handbook (which doesn't exist).


Video Friday: Aibo Reborn, Robot Plus HoloLens, and NREC's Formula

IEEE Spectrum Robotics Channel

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We'll also be posting a weekly calendar of upcoming robotics events for the next two months; here's what we have so far (send us your events!): Let us know if you have suggestions for next week, and enjoy today's videos. We already posted about the unveiling of Sony's new Aibo, but here's a bit of extra video from the event showing the little robotic dog in live action: In this video we show a compilation of our research for the last 4 years on autonomous navigation of bipedal robots. It is part of the DFG-founded project "Versatile and Robust Walking in Uneven Terrain" (German Research Foundation) and includes development in environment perception and modeling, motion planning and stability control.


Video Friday: Rocket RoboBee, Willow Garage, and Caltech's Cassie

IEEE Spectrum Robotics Channel

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We'll also be posting a weekly calendar of upcoming robotics events for the next two months; here's what we have so far (send us your events!): Let us know if you have suggestions for next week, and enjoy today's videos. A new RoboBee from Harvard can swim underwater, and then launch itself into the air with a microrocket and fly away. At the millimeter scale, the water's surface might as well be a brick wall.


autonomous-robots-plant-tend-and-harvest-entire-crop-of-barley?utm_source=feedburner-robotics&utm_medium=feed&utm_campaign=Feed%3A+IeeeSpectrumRobotics+%28IEEE+Spectrum%3A+Robotics%29

IEEE Spectrum Robotics Channel

During the Hands Free Hectare project, no human set foot on the field between planting and harvest--everything was done by robots. To make these decisions, robot scouts (including drones and ground robots) surveyed the field from time to time, sending back measurements and bringing back samples for humans to have a look at from the comfort of someplace warm and dry and clean. With fully autonomous farm vehicles, you can use a bunch of smaller ones much more effectively than a few larger ones, which is what the trend has been toward if you need a human sitting in the driver's seat. Robots are only going to get more affordable and efficient at this sort of thing, and our guess is that it won't be long before fully autonomous farming passes conventional farming methods in both overall output and sustainability.


Video Friday: DARPA's LUKE Arm, Human Support Robot, and Starting a Robotics Company

IEEE Spectrum Robotics Channel

Dean Kamen's DEKA R&D firm, with support from DARPA's Revolutionizing Prosthetics Program, designed the advanced prosthetic LUKE Arm to give amputees "dexterous arm and hand movement through a simple, intuitive control system." A series of research flights at NASA's Dryden (now Armstrong) Flight Research Center in the summer of 2005 validated the premise that using thermal lift could significantly extend the range and endurance of small unmanned air vehicles (UAVs) without a corresponding increase in fuel requirements. This 1-minute, 53-second video taken on October 1, 2011 shows the NASA Dryden (now Armstrong) Flight Research Center's Dryden Remotely Operated Integrated Drone (DROID) sub-scale test bed aircraft is moving up to the flight test big leagues! The center's Automatic Collision Avoidance Technology team conducted test flights of new software architecture on the radio-controlled large model aircraft to demonstrate that even the simplest flight systems may benefit from Automatic Ground Collision Avoidance Software (GCAS).


Video Friday: Valkyrie on Rough Terrain, Harvard Arthropods, and Flying Wheeled Robot

IEEE Spectrum Robotics Channel

I suppose you could decide that this project from MIT's Tangible Media Group isn't really a robot, but I think it's arguably robotic enough (and definitely cool enough) that we can let it slide for this week: We present AnimaStage: a hands-on animated craft platform based on an actuated stage. At the end of every semester, UC Berkeley has a design showcase in Jacobs Hall. My modified Racing Roomba takes on the obstacle course at UC Berkeley's annual student vehicle challenge. If so, they didn't put it on this table: Two modules of EJBot propeller-type climbing robot which use a hybrid actuation system.


Video Friday: Robot Dance Teacher, Transformer Drone, and Pneumatic Reel Actuator

IEEE Spectrum Robotics Channel

These results validate the performance of aerial grasping based on our proposed wholebody grasp planning and motion control method. However, for most vehicles, high performance over rough terrain reduces the travel speed and/or requires complex mechanisms. We extend GPS in the following ways: (1) we propose the use of a model-free local optimizer based on path integral stochastic optimal control (PI2), which enables us to learn local policies for tasks with highly discontinuous contact dynamics; and (2) we enable GPS to train on a new set of task instances in every iteration by using on-policy sampling: this increases the diversity of the instances that the policy is trained on, and is crucial for achieving good generalization. To increase the spike decision rates, iterative spiking training with actual blockers is required.


Draper's Genetically Modified Cyborg DragonflEye Takes Flight

IEEE Spectrum Robotics Channel

In January, we wrote about a cybernetic micro air vehicle under development at Draper called DragonflEye. The backpack interfaces directly with the dragonfly's nervous system to control it, and uses tiny solar panels to harvest enough energy to power itself without the need for batteries. The unique thing about DragonflEye (relative to other cyborg insects) is that it doesn't rely on spoofing the insect's sensors or controlling its muscles, but instead uses optical electrodes to inject steering commands directly into the insect's nervous system, which has been genetically tweaked to accept them. This means that the dragonfly can be controlled to fly where you want, without sacrificing the built-in flight skills that make insects the envy of all other robotic micro air vehicles.