Neural Networks


Blockchain, machine learning: What your CV must have for you to shine in tech world

#artificialintelligence

Rapid developments in technology require professionals to upgrade their skills for technology-centered jobs of tomorrow. Srikanth Vidapanakal, who has been into data for more than 18 years, was inquisitive to learn about new technologies. He did a Self-Driving Car Engineer Nanodegree that helped him acquire advanced skills and landed him with a job in automation sector. Srikanth is an example of lifelong learning where staying relevant in the age of rapidly changing technologies is the need of the hour. In 2017, research suggested that AI and robotics could collectively take over 800 million jobs worldwide by 2030.


Adaptive Behavior Generation for Autonomous Driving using Deep Reinforcement Learning with Compact Semantic States

arXiv.org Machine Learning

Making the right decision in traffic is a challenging task that is highly dependent on individual preferences as well as the surrounding environment. Therefore it is hard to model solely based on expert knowledge. In this work we use Deep Reinforcement Learning to learn maneuver decisions based on a compact semantic state representation. This ensures a consistent model of the environment across scenarios as well as a behavior adaptation function, enabling on-line changes of desired behaviors without re-training. The input for the neural network is a simulated object list similar to that of Radar or Lidar sensors, superimposed by a relational semantic scene description. The state as well as the reward are extended by a behavior adaptation function and a parameterization respectively. With little expert knowledge and a set of mid-level actions, it can be seen that the agent is capable to adhere to traffic rules and learns to drive safely in a variety of situations.


Parking Lot Vehicle Detection Using Deep Learning – GeoAI – Medium

#artificialintelligence

Although the idea of vehicle detection is not a groundbreaking one and has been around since the emergence of video cameras and embedded sensors, these methods were often marred by high capital and maintenance costs and a high complexity from having to integrate multiple data sources, each with a limited band of inputs. The prevalence of drones in the commercial market in recent years on the other hand, has brought about a new era of state-of-the-art aerial photogrammetry and a drastic reduction in the cost of obtaining aerial data. With this sudden increase in information, and by combining machine learning with GIS technologies, we are now capable of performing new and insightful analyses on issues of interest. Existent business problems which stand to benefit from this include customer flow analyses and demographic modelling. This is particularly useful for those in the retail sector looking to monitor peak business hours by counting the number of parked vehicles at a given time and also extrapolate useful customer information (such as income, marital status, household size and even political inclination) by classifying the types of vehicles they own.


Deep Lidar CNN to Understand the Dynamics of Moving Vehicles

arXiv.org Machine Learning

Perception technologies in Autonomous Driving are experiencing their golden age due to the advances in Deep Learning. Yet, most of these systems rely on the semantically rich information of RGB images. Deep Learning solutions applied to the data of other sensors typically mounted on autonomous cars (e.g. lidars or radars) are not explored much. In this paper we propose a novel solution to understand the dynamics of moving vehicles of the scene from only lidar information. The main challenge of this problem stems from the fact that we need to disambiguate the proprio-motion of the 'observer' vehicle from that of the external 'observed' vehicles. For this purpose, we devise a CNN architecture which at testing time is fed with pairs of consecutive lidar scans. However, in order to properly learn the parameters of this network, during training we introduce a series of so-called pretext tasks which also leverage on image data. These tasks include semantic information about vehicleness and a novel lidar-flow feature which combines standard image-based optical flow with lidar scans. We obtain very promising results and show that including distilled image information only during training, allows improving the inference results of the network at test time, even when image data is no longer used.


How To Plan Today For Tomorrow's AI-Powered Cars

#artificialintelligence

For more than a century, the life of a vehicle has begun in the factory. To ensure a smooth transition to the automotive life cycle of the future, manufacturers must carefully design, build and run datacenters optimized for training artificial intelligence at scale. Autonomous vehicles rely on deep neural networks to handle functions that a human driver would typically be responsible for. These algorithms can perceive the world around the car, plan the vehicle's motion and actuate that path. Before they can safely run in the car, deep neural networks must be rigorously trained in the datacenter, where they are shown millions of hours of driving data, enabling an autonomous vehicle to recognize and react to scenarios on its own.


Deep Learning Based Vehicle Make-Model Classification

arXiv.org Artificial Intelligence

This paper studies the problems of vehicle make & model classification. Some of the main challenges are reaching high classification accuracy and reducing the annotation time of the images. To address these problems, we have created a fine-grained database using online vehicle marketplaces of Turkey. A pipeline is proposed to combine an SSD (Single Shot Multibox Detector) model with a CNN (Convolutional Neural Network) model to train on the database. In the pipeline, we first detect the vehicles by following an algorithm which reduces the time for annotation. Then, we feed them into the CNN model. It is reached approximately 4% better classification accuracy result than using a conventional CNN model. Next, we propose to use the detected vehicles as ground truth bounding box (GTBB) of the images and feed them into an SSD model in another pipeline. At this stage, it is reached reasonable classification accuracy result without using perfectly shaped GTBB. Lastly, an application is implemented in a use case by using our proposed pipelines. It detects the unauthorized vehicles by comparing their license plate numbers and make & models. It is assumed that license plates are readable.


End to End Vehicle Lateral Control Using a Single Fisheye Camera

arXiv.org Machine Learning

Convolutional neural networks are commonly used to control the steering angle for autonomous cars. Most of the time, multiple long range cameras are used to generate lateral failure cases. In this paper we present a novel model to generate this data and label augmentation using only one short range fisheye camera. We present our simulator and how it can be used as a consistent metric for lateral end-to-end control evaluation. Experiments are conducted on a custom dataset corresponding to more than 10000 km and 200 hours of open road driving. Finally we evaluate this model on real world driving scenarios, open road and a custom test track with challenging obstacle avoidance and sharp turns. In our simulator based on real-world videos, the final model was capable of more than 99% autonomy on urban road


Motion Prediction of Traffic Actors for Autonomous Driving using Deep Convolutional Networks

arXiv.org Machine Learning

Recent algorithmic improvements and hardware breakthroughs resulted in a number of success stories in the field of AI impacting our daily lives. However, despite its ubiquity AI is only just starting to make advances in what may arguably have the largest impact thus far, the nascent field of autonomous driving. In this work we discuss this important topic and address one of crucial aspects of the emerging area, the problem of predicting future state of autonomous vehicle's surrounding necessary for safe and efficient operations. We introduce a deep learning-based approach that takes into account current state of traffic actors and produces rasterized representations of each actor's vicinity. The raster images are then used by deep convolutional models to infer future movement of actors while accounting for inherent uncertainty of the prediction task. Extensive experiments on real-world data strongly suggest benefits of the proposed approach. Moreover, following successful tests the system was deployed to a fleet of autonomous vehicles.


Elon Musk, DeepMind and AI researchers promise not to develop robot killing machines

The Independent

Elon Musk and many of the world's most respected artificial intelligence researchers have committed not to build autonomous killer robots. The public pledge not to make any "lethal autonomous weapons" comes amid increasing concern about how machine learning and AI will be used on the battlefields of the future. The signatories to the new pledge – which includes the founders of DeepMind, a founder of Skype, and leading academics from across the industry – promise that they will not allow the technology they create to be used to help create killing machines. The I.F.O. is fuelled by eight electric engines, which is able to push the flying object to an estimated top speed of about 120mph. The giant human-like robot bears a striking resemblance to the military robots starring in the movie'Avatar' and is claimed as a world first by its creators from a South Korean robotic company Waseda University's saxophonist robot WAS-5, developed by professor Atsuo Takanishi and Kaptain Rock playing one string light saber guitar perform jam session A man looks at an exhibit entitled'Mimus' a giant industrial robot which has been reprogrammed to interact with humans during a photocall at the new Design Museum in South Kensington, London Electrification Guru Dr. Wolfgang Ziebart talks about the electric Jaguar I-PACE concept SUV before it was unveiled before the Los Angeles Auto Show in Los Angeles, California, U.S The Jaguar I-PACE Concept car is the start of a new era for Jaguar.


Startup develops AI that can detect machine failure just by listening to sounds

#artificialintelligence

Listen to your vehicle - this is an advice that all car and motorcycle owners are given when they're getting to know more about the vehicle. Now, a new AI service developed by 3Dsignals, an Israel based start-up is doing just that. The AI system can detect an impending failure in cars or other machines, just by listening to the sound. The system depends on deep learning technique to identify the noise patterns of a car. As per a report by IEEE spectrum, 3Dsignals promises to reduce machinery downtime by 40% and improve efficiency.