Results


US government to use facial recognition technology at Mexico border crossing

The Guardian

The US government is deploying a new facial recognition system at the southern border that would record images of people inside vehicles entering and leaving the country. The pilot program, scheduled to begin in August, will build on secretive tests conducted in Arizona and Texas during which authorities collected a "massive amount of data", including images captured "as people were leaving work, picking up children from school, and carrying out other daily routines", according to government records. The project, which US Customs and Border Protection (CBP) confirmed to the Guardian on Tuesday, sparked immediate criticisms from civil liberties advocates who said there were a host of privacy and constitutional concerns with an overly broad surveillance system relying on questionable technology. Already the largest and most funded federal law enforcement agency in its own right, the border patrol is part of the umbrella agency US Customs and Border Protection (CBP). CBP's approximately 60,000 employees are split in four major divisions: officers who inspect imports; an air and marine division; agents who staff ports of entry โ€“ international airports, seaports and land crossings; and the approximately 20,000 agents of the border patrol, who are concentrated in the south-west, but stationed nationwide.


Machine learning and data are fueling a new kind of car, brought to you by Intel

@machinelearnbot

The automobile is being dismantled, reimagined, and rebuilt in Silicon Valley. Intel's proposed $15.3 billion acquisition of Mobileye, an Israeli company that supplies carmakers with a computer-vision technology and advanced driver assistance systems, offers a chance to measure the scale of this rebuild. In particular, it shows how valuable on-the-road data is likely to be in the evolution of automated driving. While the price tag might seem steep, especially with so many players in automated driving today, Mobileye has some key technological strengths and strategic advantages. It's also developing new technologies that could help solidify this position.


Hackers Are the Real Obstacle for Self-Driving Vehicles

MIT Technology Review

Before autonomous trucks and taxis hit the road, manufacturers will need to solve problems far more complex than collision avoidance and navigation (see "10 Breakthrough Technologies 2017: Self-Driving Trucks"). These vehicles will have to anticipate and defend against a full spectrum of malicious attackers wielding both traditional cyberattacks and a new generation of attacks based on so-called adversarial machine learning (see "AI Fight Club Could Help Save Us from a Future of Super-Smart Cyberattacks"). As consensus grows that autonomous vehicles are just a few years away from being deployed in cities as robotic taxis, and on highways to ease the mind-numbing boredom of long-haul trucking, this risk of attack has been largely missing from the breathless coverage. It reminds me of numerous articles promoting e-mail in the early 1990s, before the newfound world of electronic communications was awash in unwanted spam. Back then, the promise of machine learning was seen as a solution to the world's spam problems.


Applications Of Machine Learning For Designers โ€“ Smashing Magazine

#artificialintelligence

As a designer, you will be facing more demands and opportunities to work with digital systems that embody machine learning. To have your say about how best to use it, you need a good understanding about its applications and related design patterns. This article illustrates the power of machine learning through the applications of detection, prediction and generation. It gives six reasons why machine learning makes products and services better and introduces four design patterns relevant to such applications. To help you get started, I have included two non-technical questions that will help with assessing whether your task is ready to be learned by a machine. We are expecting a great many things to happen once the big data deluge has been funnelled into a nurturing stream of bits. Data can be used in many ways. One is to build smart products, and another is to make better design and business decisions. The latter also, ultimately, trickle into products. Machine learning is a very promising approach radically shaping future product and service development. Machine learning is a branch of artificial intelligence. It employs many methods: Deep learning and neural networks are two well-known instances.


Machine Learning Will Be a Vehicle for Many Heists in the Future - DZone Big Data

#artificialintelligence

I am spending some cycles on my algorithmic rotoscope work -- which is basically a stationary exercise bicycle for my learning about what is and what is not Machine Learning. I am using it to help me understand and tell stories about Machine Learning by creating images using Machine Learning that I can use in my Machine Learning storytelling. Picture a bunch of Machine Learning gears all working together to help make sense of what I'm doing, and WTF I am talking about? As I'm writing a story on how image style transfer Machine Learning could be put to use by libraries, museums, and collection curators, I'm reminded of what a con machine learning will be in the future, and how it will be a vehicle for the extraction of value and outright theft. My image style transfer work is just one tiny slice of this pie.


How Drive.ai Is Mastering Autonomous Driving With Deep Learning

#artificialintelligence

Among all of the self-driving startups working toward Level 4 autonomy (a self-driving system that doesn't require human intervention in most scenarios), Mountain View, Calif.-based Drive.ai's Drive sees deep learning as the only viable way to make a truly useful autonomous car in the near term, says Sameep Tandon, cofounder and CEO. "If you look at the long-term possibilities of these algorithms and how people are going to build [self-driving cars] in the future, having a learning system just makes the most sense. There's so much complication in driving, there are so many things that are nuanced and hard, that if you have to do this in ways that aren't learned, then you're never going to get these cars out there." It's only been about a year since Drive went public, but already, the company has a fleet of four vehicles navigating (mostly) autonomously around the San Francisco Bay Area--even in situations (such as darkness, rain, or hail) that are notoriously difficult for self-driving cars. Last month, we went out to California to take a ride in one of Drive's cars, and to find out how it's using deep learning to master autonomous driving.


Machine learning and data are fueling a new kind of car, brought to you by Intel

#artificialintelligence

The automobile is being dismantled, reimagined, and rebuilt in Silicon Valley. Intel's proposed $15.3 billion acquisition of Mobileye, an Israeli company that supplies carmakers with a computer-vision technology and advanced driver assistance systems, offers a chance to measure the scale of this rebuild. In particular, it shows how valuable on-the-road data is likely to be in the evolution of automated driving. While the price tag might seem steep, especially with so many players in automated driving today, Mobileye has some key technological strengths and strategic advantages. It's also developing new technologies that could help solidify this position.