Results


The race to own the autonomous super highway: Digging deeper into Broadcom's offer to buy Qualcomm

Robohub

Governor Andrew Cuomo of the State of New York declared last month that New York City will join 13 other states in testing self-driving cars: "Autonomous vehicles have the potential to save time and save lives, and we are proud to be working with GM and Cruise on the future of this exciting new technology." For General Motors, this represents a major milestone in the development of its Cruise software, since the the knowledge gained on Manhattan's busy streets will be invaluable in accelerating its deep learning technology. In the spirit of one-upmanship, Waymo went one step further by declaring this week that it will be the first car company in the world to ferry passengers completely autonomously (without human engineers safeguarding the wheel). As unmanned systems are speeding ahead toward consumer adoption, one challenge that Cruise, Waymo and others may counter within the busy canyons of urban centers is the loss of Global Positioning System (GPS) satellite data. Robots require a complex suite of coordinating data systems that bounce between orbiting satellites to provide positioning and communication links to accurately navigate our world.


New NHTSA Robocar regulations are a major, but positive, reversal

Robohub

The proposed regulations preempt state regulation of vehicle design, and allow companies to apply for high volume exemptions from the standards that exist for human-driven cars. There is a new research area known as "explainable AI" which hopes to bridge this gap and make it possible to document and understand why machine learning systems operate as they do. The most interesting proposal in the prior document was a requirement for public sharing of incident and crash data so that all teams could learn from every problem any team encounters. The new document calls for a standard data format, and makes general motherhood calls for storing data in a crash, something everybody already does.


Dr Nathan Griffiths: Driverless cars? How the road to the future will be driven by machine learning

Robohub

Nathan is a Reader in the Department of Computer Science at the University of Warwick, whose research into the application of machine learning for autonomous vehicles (or "driverless cars") has been supported by a Royal Society University Research Fellowship. My research uses machine learning to give insights into how objects or people interact and how patterns emerge and evolve. Machine learning algorithms will examine previous behaviours and learn from these behaviours, to then predict what will happen in the future. An accurate algorithm could then be used to inform the decisions vehicles make and predict vehicle journeys and routes.


LIDAR (lasers) and cameras together: Which is more important?

Robohub

Recently we've seen a series of startups arise hoping to make robocars with just computer vision, along with radar. That includes recently unstealthed AutoX, the off-again, on again efforts of comma.ai Their optimism is based on the huge progress being made in the use of machine learning, most notably convolutional neural networks, at solving the problems of computer vision. Milestones are dropping quickly in AI and particularly pattern matching and computer vision. There are reasons pushing some teams this way.