Results


Why Rat-Brained Robots Are So Good at Navigating Unfamiliar Terrain

IEEE Spectrum Robotics Channel

If you take a common brown rat and drop it into a lab maze or a subway tunnel, it will immediately begin to explore its surroundings, sniffing around the edges, brushing its whiskers against surfaces, peering around corners and obstacles. After a while, it will return to where it started, and from then on, it will treat the explored terrain as familiar. Roboticists have long dreamed of giving their creations similar navigation skills. To be useful in our environments, robots must be able to find their way around on their own. Some are already learning to do that in homes, offices, warehouses, hospitals, hotels, and, in the case of self-driving cars, entire cities. Despite the progress, though, these robotic platforms still struggle to operate reliably under even mildly challenging conditions.


After Mastering Singapore's Streets, NuTonomy's Robo-taxis Are Poised to Take on New Cities

IEEE Spectrum Robotics Channel

Take a short walk through Singapore's city center and you'll cross a helical bridge modeled on the structure of DNA, pass a science museum shaped like a lotus flower, and end up in a towering grove of artificial Supertrees that pulse with light and sound. It's no surprise, then, that this is the first city to host a fleet of autonomous taxis. Since last April, robo-taxis have been exploring the 6 kilometers of roads that make up Singapore's One-North technology business district, and people here have become used to hailing them through a ride-sharing app. Maybe that's why I'm the only person who seems curious when one of the vehicles--a slightly modified Renault Zoe electric car--pulls up outside of a Starbucks. Seated inside the car are an engineer, a safety driver, and Doug Parker, chief operating officer of nuTonomy, the MIT spinout that's behind the project.