Results


The race to own the autonomous super highway: Digging deeper into Broadcom's offer to buy Qualcomm

Robohub

Governor Andrew Cuomo of the State of New York declared last month that New York City will join 13 other states in testing self-driving cars: "Autonomous vehicles have the potential to save time and save lives, and we are proud to be working with GM and Cruise on the future of this exciting new technology." For General Motors, this represents a major milestone in the development of its Cruise software, since the the knowledge gained on Manhattan's busy streets will be invaluable in accelerating its deep learning technology. In the spirit of one-upmanship, Waymo went one step further by declaring this week that it will be the first car company in the world to ferry passengers completely autonomously (without human engineers safeguarding the wheel). As unmanned systems are speeding ahead toward consumer adoption, one challenge that Cruise, Waymo and others may counter within the busy canyons of urban centers is the loss of Global Positioning System (GPS) satellite data. Robots require a complex suite of coordinating data systems that bounce between orbiting satellites to provide positioning and communication links to accurately navigate our world.


"Scientists are still suspicious of AI" - Globes English

#artificialintelligence

In March 2016, Google's Alphago artificial intelligence (AI) program stunned the world by beating the human world champion Go player in front of 200 million spectators. This was living proof of the potential in AI technology and the level of maturity reached by neural network and deep learning technologies. Those astounded by the success included quite a few engineers and managers who have been leading the AI revolution in the world in recent years. One of these was Intel VP Naveen Rao, general manager of the company's Artificial Intelligence Products Group, which was founded last year. "When I studied at college in the 1990s, we regarded artificial intelligence as'creative work'," Rao relates.


AI and IoT: Taking Data Insight to Action - DZone IoT

#artificialintelligence

Recent Gartner estimations lead us to believe that up to 20 billion connected things will be in use by 2020. Data is the oil of our century -- but should we be concerned with a "data spill hazard"? Will artificial intelligence curb this threatening phenomenon, or rather, will it reveal the full potential of IoT data value? If my calculations are correct, when artificial intelligence hits the Internet of Things... you're gonna see some serious sh*t." The question is no longer whether companies should embrace big data analytics technologies.


The future of transport: The co-pilot takes over with driverless cars (sponsored)

#artificialintelligence

AT THE Consumer Electronics Show in Las Vegas two years ago a leading car maker unveiled a machine that it said was a vision of the future. It certainly looked the part, with a sleek silver body shell, a steering wheel that retracted into the dashboard and four lounge-style chairs that could rotate to face one other. The most startling feature, though, was its self-driving ability. It was filmed navigating through San Francisco shortly before its futuristic doors swung open to journalists. We stepped onto the car's wooden floor and looked at a calming forest projected onto the windows as the car drove itself along the runway of a nearby airbase.


Chinese facial recognition firm raises mammoth $410m in funding

#artificialintelligence

As governments and tech giants alike target AI advances, one facial recognition start-up has secured a huge amount of funding in China. The Dubai police force is welcoming AI into its operation with open, robotic arms. Apple is reportedly testing a new 3D facial-scanning feature that will unlock your iPhone instead of using a fingerprint. Facebook is powering ahead with its augmented reality camera trials, taking in Meitu (and its 1.bn users) in its latest project. The money it's attracting is massive, too.


An Intelligent Claims Process

#artificialintelligence

Artificial intelligence, Machine Learning, and Deep Learning are more than futuristic concepts. These technologies are impacting the insurance industry in a significant way right now and this impact is likely to increase in the near future. The idea of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) may fascinate consumers who enjoy talking to their digital while admiring a Nest thermostat. But for the insurance industry, these terms are business-changers that affect products and services offered and interactions with consumers and other industry partners. The definitions of these terms may be a bit confusing to the uninitiated (see sidebar).


Robocar Startup Drive.ai Gets Backing From Uber Rival Grab, Plans Singapore Move

#artificialintelligence

After announcing plans this month to supply self-driving vehicles for Lyft's ride-hailing network, the autonomous tech developer has scored financial backing from Southeast Asian rideshare powerhouse Grab and plans to expand into Singapore. Singapore office will study that market as a potential place to deploy vehicles equipped with its software and self-driving hardware kits in government and business fleets, Tandon said. Amid the rush by auto and tech firms to perfect robotic vehicles, Tandon and his co-founders, who were all researchers from Stanford University's Artificial Intelligence Lab, founded Drive.ai to specialize in deep learning-based driving software for business, government and shared vehicle fleets. Small relative to well-funded programs at Waymo, General Motors' Cruise, Uber's Advanced Technology Vehicle Group and Ford's Argo AI, Mountain View, California-based Drive.ai has made quick progress.


Nvidia aims for level 5 vehicle autonomy with Pegasus

ZDNet

By the middle of 2018, Nvidia believes it will have a system capable of level 5 autonomy in the hands of the auto industry, which will allow for fully self-driving vehicles. Pegasus is rated as being capable of 320 trillion operations per second, which the company claims is a thirteen-fold increase over previous generations. In May, Nvidia took the wraps off its Tesla V100 accelerator aimed at deep learning. The company said the V100 has 1.5 times the general-purpose FLOPS compared to Pascal, a 12 times improvement for deep learning training, and six times the performance for deep learning inference.


Is Facebook Building An Autonomous Car?

#artificialintelligence

Facebook seems to have a strategy of leveraging its capabilities in social marketing, AR & VR and interestingly, who would have thought of it, leveraging its advanced AI and deep learning capabilities to support the development of autonomous vehicles. Potential car buyers spend anywhere between 30 to 50 minutes every day on Facebook and that has helped the social business make significant inroads in digital prospecting and omni-channel commerce. Facebook believes that car companies are focusing more on the connected car, rather than the connected consumer. With every new customer car buying journey now beginning online, it is possible through Facebook's huge data on a customer's social behavior, to make that experience personalized and completely customized.


Machine Learning at HPC User Forum: Drilling into Specific Use Cases

@machinelearnbot

Dr. Weng-Keen Wong from the NSF echoed much the same distinction between the specific and general case algorithm during his talk "Research in Deep Learning: A Perspective From NSF" and was also mentioned by Nvidia's Dale Southard during the disruptive technology panel. Tim Barr's (Cray) "Perspectives on HPC-Enabled AI" showed how Cray's HPC technologies can be leveraged for Machine and Deep Learning for vision, speech and language. Fresh off their integration of SGI technology into their technology stack, the talk not only highlighted the newer software platforms which the learning systems leverage, but demonstrated that HPE's portfolio of systems and experience in both HPC and hyper scale environments is impressive indeed. Stand-alone image recognition is really cool, but as expounded upon above, the true benefit from deep learning is having an integrated workflow where data sources are ingested by a general purpose deep learning platform with outcomes that benefit business, industry and academia.