Results


Preventing Application Fraud with Machine Learning and AI

#artificialintelligence

In 1997, the IBM supercomputer Deep Blue beat chess grandmaster Garry Kasparov. This defeat skyrocketed artificial intelligence (AI) into the headlines. Twenty years on, AI has transformed our daily lives: from the medical field to voice controlled devices that will order your favorite pizza to self-driving autonomous vehicles. But how can it best be used to fight application fraud? It was not much before Deep Blue, in 1992, that FICO pioneered the use of artificial intelligence and machine learning to fight credit card fraud.


Transforming from Autonomous to Smart: Reinforcement Learning Basics

#artificialintelligence

In the blog "From Autonomous to Smart: Importance of Artificial Intelligence," we laid out the artificial intelligence (AI) challenges in creating "smart" edge devices: We also talked about how Moore's Law isn't going to bail us out of these challenges; that the growth of Internet of Things (IOT) data and the complexity of the problems that we are trying to address at the edge (think "smart" cars) is growing much faster than Moore's Law can accommodate. So we are going to use this blog to deep dive into the category of artificial intelligence called reinforcement learning. We are going to see how reinforcement learning might help us to address these challenges; to work smarter at the edge when brute force technology advances will not suffice. With the rapid increases in computing power, it's easy to get seduced into thinking that raw computing power can solve problems like smart edge devices (e.g., cars, trains, airplanes, wind turbines, jet engines, medical devices). Look at the dramatic increase in the number of possible moves between checkers and chess even though the board layout is exactly the same.


TechVisor - Het vizier op de tech industrie

#artificialintelligence

In 1997, the IBM supercomputer Deep Blue beat chess grandmaster Garry Kasparov. This defeat skyrocketed artificial intelligence (AI) into the headlines. Twenty years on, AI has transformed our daily lives: from the medical field to voice controlled devices that will order your favorite pizza to self-driving autonomous vehicles. But how can it best be used to fight application fraud?


Transforming from Autonomous to Smart: Reinforcement Learning Basics – InFocus Blog Dell EMC Services

#artificialintelligence

In the blog "From Autonomous to Smart: Importance of Artificial Intelligence," we laid out the artificial intelligence (AI) challenges in creating "smart" edge devices: We also talked about how Moore's Law isn't going to bail us out of these challenges; that the growth of Internet of Things (IOT) data and the complexity of the problems that we are trying to address at the edge (think "smart" cars) is growing much faster than Moore's Law can accommodate. So we are going to use this blog to deep dive into the category of artificial intelligence called reinforcement learning. We are going to see how reinforcement learning might help us to address these challenges; to work smarter at the edge when brute force technology advances will not suffice. With the rapid increases in computing power, it's easy to get seduced into thinking that raw computing power can solve problems like smart edge devices (e.g., cars, trains, airplanes, wind turbines, jet engines, medical devices). Look at the dramatic increase in the number of possible moves between checkers and chess even though the board layout is exactly the same.


Transforming from Autonomous to Smart: Reinforcement Learning Basics

@machinelearnbot

In the blog "From Autonomous to Smart: Importance of Artificial Intelligence," we laid out the artificial intelligence (AI) challenges in creating "smart" edge devices: We also talked about how Moore's Law isn't going to bail us out of these challenges; that the growth of Internet of Things (IOT) data and the complexity of the problems that we are trying to address at the edge (think "smart" cars) is growing much faster than Moore's Law can accommodate. So we are going to use this blog to deep dive into the category of artificial intelligence called reinforcement learning. We are going to see how reinforcement learning might help us to address these challenges; to work smarter at the edge when brute force technology advances will not suffice. With the rapid increases in computing power, it's easy to get seduced into thinking that raw computing power can solve problems like smart edge devices (e.g., cars, trains, airplanes, wind turbines, jet engines, medical devices). Look at the dramatic increase in the number of possible moves between checkers and chess even though the board layout is exactly the same.


The Moral Imperative of Artificial Intelligence

#artificialintelligence

The big news on March 12 of this year was of the Go-playing AI-system AlphaGo securing victory against 18-time world champion Lee Se-dol by winning the third straight game of a five-game match in Seoul, Korea. After Deep Blue's victory against chess world champion Gary Kasparov in 1997, the game of Go was the next grand challenge for game-playing artificial intelligence. Go has defied the brute-force methods in game-tree search that worked so successfully in chess. In 2012, Communications published a Research Highlight article by Sylvain Gelly et al. on computer Go, which reported that "Programs based on Monte-Carlo tree search now play at human-master levels and are beginning to challenge top professional players." AlphaGo combines tree-search techniques with search-space reduction techniques that use deep learning.