In Search of the Horowitz Factor

AI Magazine

The article introduces the reader to a large interdisciplinary research project whose goal is to use AI to gain new insight into a complex artistic phenomenon. We study fundamental principles of expressive music performance by measuring performance aspects in large numbers of recordings by highly skilled musicians (concert pianists) and analyzing the data with state-of-the-art methods from areas such as machine learning, data mining, and data visualization. The article first introduces the general research questions that guide the project and then summarizes some of the most important results achieved to date, with an emphasis on the most recent and still rather speculative work. Our current results show that it is possible for machines to make novel and interesting discoveries even in a domain such as music and that even if we might never find the "Horowitz Factor," AI can give us completely new insights into complex artistic behavior.

AI and Music: From Composition to Expressive Performance

AI Magazine

In this article, we first survey the three major types of computer music systems based on AI techniques: (1) compositional, (2) improvisational, and (3) performance systems. For this reason, previous approaches, based on following musical rules trying to capture interpretation knowledge, had serious limitations. An alternative approach, much closer to the observation-imitation process observed in humans, is that of directly using the interpretation knowledge implicit in examples extracted from recordings of human performers instead of trying to make explicit such knowledge. In the last part of the article, we report on a performance system, SAXEX, based on this alternative approach, that is capable of generating high-quality expressive solo performances of jazz ballads based on examples of human performers within a case-based reasoning (CBR) system.