Results


How AI Protects PayPal's Payments and Performance The Official NVIDIA Blog

#artificialintelligence

With advances in machine learning and the deployments of neural networks, logistic regression-powered models are expanding their uses throughout PayPal. PayPal's deep learning system is able to filter out deceptive merchants and crack down on sales of illegal products. Kutsyy explained the machines can identify "why transactions fail, monitoring businesses more efficiently," avoiding the need to buy more hardware for problem solving. The AI Podcast is available through iTunes, DoggCatcher, Google Play Music, Overcast, PlayerFM, Podbay, Pocket Casts, PodCruncher, PodKicker, Stitcher and Soundcloud.


Moore's Law may be out of steam, but the power of artificial intelligence is accelerating

#artificialintelligence

A paper from Google's researchers says they simultaneously used as many as 800 of the powerful and expensive graphics processors that have been crucial to the recent uptick in the power of machine learning (see "10 Breakthrough Technologies 2013: Deep Learning"). Feeding data into deep learning software to train it for a particular task is much more resource intensive than running the system afterwards, but that still takes significant oomph. Intel has slowed the pace at which it introduces generations of new chips with smaller, denser transistors (see "Moore's Law Is Dead. It also motivates the startups--and giants such as Google--creating new chips customized to power machine learning (see "Google Reveals a Powerful New AI Chip and Supercomputer").


Moore's Law may be out of steam, but the power of artificial intelligence is accelerating

#artificialintelligence

A paper from Google's researchers says they simultaneously used as many as 800 of the powerful and expensive graphics processors that have been crucial to the recent uptick in the power of machine learning (see "10 Breakthrough Technologies 2013: Deep Learning"). Feeding data into deep learning software to train it for a particular task is much more resource intensive than running the system afterwards, but that still takes significant oomph. Intel has slowed the pace at which it introduces generations of new chips with smaller, denser transistors (see "Moore's Law Is Dead. It also motivates the startups--and giants such as Google--creating new chips customized to power machine learning (see "Google Reveals a Powerful New AI Chip and Supercomputer").


Deep Learning for Chatbots, Part 2 – Implementing a Retrieval-Based Model in Tensorflow

#artificialintelligence

A positive label means that an utterance was an actual response to a context, and a negative label means that the utterance wasn't – it was picked randomly from somewhere in the corpus. Each record in the test/validation set consists of a context, a ground truth utterance (the real response) and 9 incorrect utterances called distractors. Before starting with fancy Neural Network models let's build some simple baseline models to help us understand what kind of performance we can expect. The Deep Learning model we will build in this post is called a Dual Encoder LSTM network.


2aMy4eh

#artificialintelligence

Take a sneak peek at the awesome innovative technologies built on Intel architecture featured at this year's Intel Developer Forum. Build Caffe* optimized for Intel architecture, train deep network models using one or more compute nodes, and deploy networks. Find out how the Intel Xeon processor E5 v4 family helped improve the performance of the Chinese search engine Baidu's* deep neural networks Read about Bob Duffy's experiences getting his Microsoft* Surfacebook* set up to best maximize virtual reality (VR) applications. Intel Developer Zone experts, Intel Software Innovators, and Intel Black Belt Software Developers contribute hundreds of helpful articles and blog posts every month.


UMebnu

#artificialintelligence

A research team from Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS) recently developed artificial intelligence (AI) methods aimed at training computers to interpret pathology images, with the long-term goal of building AI-powered systems to make pathologic diagnoses more accurate. "Our AI method is based on deep learning, a machine-learning algorithm used for a range of applications including speech recognition and image recognition," explained pathologist Andrew Beck, MD, PhD, Director of Bioinformatics at the Cancer Research Institute at Beth Israel Deaconess Medical Center (BIDMC) and an Associate Professor at Harvard Medical School. In an objective evaluation in which researchers were given slides of lymph node cells and asked to determine whether or not they contained cancer, the team's automated diagnostic method proved accurate approximately 92 percent of the time, explained Khosla, adding, "This nearly matched the success rate of a human pathologist, whose results were 96 percent accurate." "But the truly exciting thing was when we combined the pathologist's analysis with our automated computational diagnostic method, the result improved to 99.5 percent accuracy," said Beck.


Using Artificial Neural Networks to Predict the Quality and Performance of Oil-Field Cements

AI Magazine

Inherent batch-to-batch variability, aging, and contamination are major factors contributing to variability in oil-field cement-slurry performance. Such variability imposes a heavy burden on performance testing and is often a major factor in operational failure. Our approach involves predicting cement compositions, particle-size distributions, and thickening-time curves from the diffuse reflectance infrared Fourier transform spectrum of neat cement powders. Our research shows that many key cement properties are captured within the Fourier transform infrared spectra of cement powders and can be predicted from these spectra using suitable neural network techniques.