Collaborating Authors

Zhang, Xiangliang

Efficient long-distance relation extraction with DG-SpanBERT Artificial Intelligence

In natural language processing, relation extraction seeks to rationally understand unstructured text. Here, we propose a novel SpanBERT-based graph convolutional network (DG-SpanBERT) that extracts semantic features from a raw sentence using the pre-trained language model SpanBERT and a graph convolutional network to pool latent features. Our DG-SpanBERT model inherits the advantage of SpanBERT on learning rich lexical features from large-scale corpus. It also has the ability to capture long-range relations between entities due to the usage of GCN on dependency tree. The experimental results show that our model outperforms other existing dependency-based and sequence-based models and achieves a state-of-the-art performance on the TACRED dataset.

Attention-Aware Answers of the Crowd Machine Learning

Crowdsourcing is a relatively economic and efficient solution to collect annotations from the crowd through online platforms. Answers collected from workers with different expertise may be noisy and unreliable, and the quality of annotated data needs to be further maintained. Various solutions have been attempted to obtain high-quality annotations. However, they all assume that workers' label quality is stable over time (always at the same level whenever they conduct the tasks). In practice, workers' attention level changes over time, and the ignorance of which can affect the reliability of the annotations. In this paper, we focus on a novel and realistic crowdsourcing scenario involving attention-aware annotations. We propose a new probabilistic model that takes into account workers' attention to estimate the label quality. Expectation propagation is adopted for efficient Bayesian inference of our model, and a generalized Expectation Maximization algorithm is derived to estimate both the ground truth of all tasks and the label-quality of each individual crowd worker with attention. In addition, the number of tasks best suited for a worker is estimated according to changes in attention. Experiments against related methods on three real-world and one semi-simulated datasets demonstrate that our method quantifies the relationship between workers' attention and label-quality on the given tasks, and improves the aggregated labels.

Multi-View Multiple Clusterings using Deep Matrix Factorization Machine Learning

Multi-view clustering aims at integrating complementary information from multiple heterogeneous views to improve clustering results. Existing multi-view clustering solutions can only output a single clustering of the data. Due to their multiplicity, multi-view data, can have different groupings that are reasonable and interesting from different perspectives. However, how to find multiple, meaningful, and diverse clustering results from multi-view data is still a rarely studied and challenging topic in multi-view clustering and multiple clusterings. In this paper, we introduce a deep matrix factorization based solution (DMClusts) to discover multiple clusterings. DMClusts gradually factorizes multi-view data matrices into representational subspaces layer-by-layer and generates one clustering in each layer. To enforce the diversity between generated clusterings, it minimizes a new redundancy quantification term derived from the proximity between samples in these subspaces. We further introduce an iterative optimization procedure to simultaneously seek multiple clusterings with quality and diversity. Experimental results on benchmark datasets confirm that DMClusts outperforms state-of-the-art multiple clustering solutions.

Prototypical Networks for Multi-Label Learning Machine Learning

We propose to address multi-label learning by jointly estimating the distribution of positive and negative instances for all labels. By a shared mapping function, each label's positive and negative instances are mapped into a new space forming a mixture distribution of two components (positive and negative). Due to the dependency among labels, positive instances are mapped close if they share common labels, while positive and negative embeddings of the same label are pushed away. The distribution is learned in the new space, and thus well presents both the distance between instances in their original feature space and their common membership w.r.t. different categories. By measuring the density function values, new instances mapped to the new space can easily identify their membership to possible multiple categories. We use neural networks for learning the mapping function and use the expectations of the positive and negative embedding as prototypes of the positive and negative components for each label, respectively. Therefore, we name our proposed method PNML (prototypical networks for multi-label learning). Extensive experiments verify that PNML significantly outperforms the state-of-the-arts.

Recurrent Attention Walk for Semi-supervised Classification Machine Learning

In this paper, we study the graph-based semi-supervised learning for classifying nodes in attributed networks, where the nodes and edges possess content information. Recent approaches like graph convolution networks and attention mechanisms have been proposed to ensemble the first-order neighbors and incorporate the relevant neighbors. However, it is costly (especially in memory) to consider all neighbors without a prior differentiation. We propose to explore the neighborhood in a reinforcement learning setting and find a walk path well-tuned for classifying the unlabelled target nodes. We let an agent (of node classification task) walk over the graph and decide where to direct to maximize classification accuracy. We define the graph walk as a partially observable Markov decision process (POMDP). The proposed method is flexible for working in both transductive and inductive setting. Extensive experiments on four datasets demonstrate that our proposed method outperforms several state-of-the-art methods. Several case studies also illustrate the meaningful movement trajectory made by the agent.

Collaborative Graph Walk for Semi-supervised Multi-Label Node Classification Machine Learning

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Collaborative Graph Walk for Semi-supervised Multi-Label Node Classification Uchenna Akujuobi, Han Y ufei †, Qiannan Zhang, Xiangliang Zhang null King Abdullah University of Science and T echnology (KAUST), Saudi Arabia { uchenna.akujuobi, Abstract --In this work, we study semi-supervised multi-label node classification problem in attributed graphs. Classic solutions to multi-label node classification follow two steps, first learn node embedding and then build a node classifier on the learned embedding. T o improve the discriminating power of the node embedding, we propose a novel collaborative graph walk, named Multi-Label-Graph-Walk, to finely tune node representations with the available label assignments in attributed graphs via reinforcement learning. The proposed method formulates the multi-label node classification task as simultaneous graph walks conducted by multiple label-specific agents. Furthermore, policies of the label-wise graph walks are learned in a cooperative way to capture first the predictive relation between node labels and structural attributes of graphs; and second, the correlation among the multiple label-specific classification tasks. A comprehensive experimental study demonstrates that the proposed method can achieve significantly better multi-label classification performance than the state-of-the-art approaches and conduct more efficient graph exploration. Index T erms --Multi-label node classification, Semi-supervised attributed graph embedding, Reinforcement learning I. I NTRODUCTION Graph-structured data are frequently witnessed in many real-world applications, such as social graphs and academic graphs. In the graph structure, nodes represent entities (e.g., users in social graphs and papers in citation graphs), whereas edges linking two nodes denote the relationship between the entities (e.g., user friendship and paper citation).

PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions Machine Learning

Graph node embedding aims at learning a vector representation for all nodes given a graph. It is a central problem in many machine learning tasks (e.g., node classification, recommendation, community detection). The key problem in graph node embedding lies in how to define the dependence to neighbors. Existing approaches specify (either explicitly or implicitly) certain dependencies on neighbors, which may lead to loss of subtle but important structural information within the graph and other dependencies among neighbors. This intrigues us to ask the question: can we design a model to give the maximal flexibility of dependencies to each node's neighborhood. In this paper, we propose a novel graph node embedding (named PINE) via a novel notion of partial permutation invariant set function, to capture any possible dependence. Our method 1) can learn an arbitrary form of the representation function from the neighborhood, withour losing any potential dependence structures, and 2) is applicable to both homogeneous and heterogeneous graph embedding, the latter of which is challenged by the diversity of node types. Furthermore, we provide theoretical guarantee for the representation capability of our method for general homogeneous and heterogeneous graphs. Empirical evaluation results on benchmark data sets show that our proposed PINE method outperforms the state-of-the-art approaches on producing node vectors for various learning tasks of both homogeneous and heterogeneous graphs.

Weakly-paired Cross-Modal Hashing Machine Learning

Hashing has been widely adopted for large-scale data retrieval in many domains, due to its low storage cost and high retrieval speed. Existing cross-modal hashing methods optimistically assume that the correspondence between training samples across modalities are readily available. This assumption is unrealistic in practical applications. In addition, these methods generally require the same number of samples across different modalities, which restricts their flexibility. We propose a flexible cross-modal hashing approach (Flex-CMH) to learn effective hashing codes from weakly-paired data, whose correspondence across modalities are partially (or even totally) unknown. FlexCMH first introduces a clustering-based matching strategy to explore the local structure of each cluster, and thus to find the potential correspondence between clusters (and samples therein) across modalities. To reduce the impact of an incomplete correspondence, it jointly optimizes in a unified objective function the potential correspondence, the cross-modal hashing functions derived from the correspondence, and a hashing quantitative loss. An alternative optimization technique is also proposed to coordinate the correspondence and hash functions, and to reinforce the reciprocal effects of the two objectives. Experiments on publicly multi-modal datasets show that FlexCMH achieves significantly better results than state-of-the-art methods, and it indeed offers a high degree of flexibility for practical cross-modal hashing tasks.

ActiveHNE: Active Heterogeneous Network Embedding Machine Learning

Heterogeneous network embedding (HNE) is a challenging task due to the diverse node types and/or diverse relationships between nodes. Existing HNE methods are typically unsupervised. To maximize the profit of utilizing the rare and valuable supervised information in HNEs, we develop a novel Active Heterogeneous Network Embedding (ActiveHNE) framework, which includes two components: Discriminative Heterogeneous Network Embedding (DHNE) and Active Query in Heterogeneous Networks (AQHN). In DHNE, we introduce a novel semi-supervised heterogeneous network embedding method based on graph convolutional neural network. In AQHN, we first introduce three active selection strategies based on uncertainty and representativeness, and then derive a batch selection method that assembles these strategies using a multi-armed bandit mechanism. ActiveHNE aims at improving the performance of HNE by feeding the most valuable supervision obtained by AQHN into DHNE. Experiments on public datasets demonstrate the effectiveness of ActiveHNE and its advantage on reducing the query cost.

Multi-View Multiple Clustering Machine Learning

Multiple clustering aims at exploring alternative clusterings to organize the data into meaningful groups from different perspectives. Existing multiple clustering algorithms are designed for single-view data. We assume that the individuality and commonality of multi-view data can be leveraged to generate high-quality and diverse clusterings. To this end, we propose a novel multi-view multiple clustering (MVMC) algorithm. MVMC first adapts multi-view self-representation learning to explore the individuality encoding matrices and the shared commonality matrix of multi-view data. It additionally reduces the redundancy (i.e., enhancing the individuality) among the matrices using the Hilbert-Schmidt Independence Criterion (HSIC), and collects shared information by forcing the shared matrix to be smooth across all views. It then uses matrix factorization on the individual matrices, along with the shared matrix, to generate diverse clusterings of high-quality. We further extend multiple co-clustering on multi-view data and propose a solution called multi-view multiple co-clustering (MVMCC). Our empirical study shows that MVMC (MVMCC) can exploit multi-view data to generate multiple high-quality and diverse clusterings (co-clusterings), with superior performance to the state-of-the-art methods.