Zhang, Chao


Generalization Bounds for Domain Adaptation

Neural Information Processing Systems

In this paper, we provide a new framework to study the generalization bound of the learning process for domain adaptation. Without loss of generality, we consider two kinds of representative domain adaptation settings: one is domain adaptation with multiple sources and the other is domain adaptation combining source and target data. In particular, we introduce two quantities that capture the inherent characteristics of domains. For either kind of domain adaptation, based on the two quantities, we then develop the specific Hoeffding-type deviation inequality and symmetrization inequality to achieve the corresponding generalization bound based on the uniform entropy number. By using the resultant generalization bound, we analyze the asymptotic convergence and the rate of convergence of the learning process for such kind of domain adaptation.


Greedy Hash: Towards Fast Optimization for Accurate Hash Coding in CNN

Neural Information Processing Systems

To convert the input into binary code, hashing algorithm has been widely used for approximate nearest neighbor search on large-scale image sets due to its computation and storage efficiency. Deep hashing further improves the retrieval quality by combining the hash coding with deep neural network. However, a major difficulty in deep hashing lies in the discrete constraints imposed on the network output, which generally makes the optimization NP hard. In this work, we adopt the greedy principle to tackle this NP hard problem by iteratively updating the network toward the probable optimal discrete solution in each iteration. A hash coding layer is designed to implement our approach which strictly uses the sign function in forward propagation to maintain the discrete constraints, while in back propagation the gradients are transmitted intactly to the front layer to avoid the vanishing gradients.


Sparse DNNs with Improved Adversarial Robustness

Neural Information Processing Systems

By converting dense models into sparse ones, pruning appears to be a promising solution to reducing the computation/memory cost. This paper studies classification models, especially DNN-based ones, to demonstrate that there exists intrinsic relationships between their sparsity and adversarial robustness. We further demonstrate that an appropriately higher model sparsity implies better robustness of nonlinear DNNs, whereas over-sparsified models can be more difficult to resist adversarial examples. Papers published at the Neural Information Processing Systems Conference.


Joint Sub-bands Learning with Clique Structures for Wavelet Domain Super-Resolution

Neural Information Processing Systems

Convolutional neural networks (CNNs) have recently achieved great success in single-image super-resolution (SISR). However, these methods tend to produce over-smoothed outputs and miss some textural details. To solve these problems, we propose the Super-Resolution CliqueNet (SRCliqueNet) to reconstruct the high resolution (HR) image with better textural details in the wavelet domain. The proposed SRCliqueNet firstly extracts a set of feature maps from the low resolution (LR) image by the clique blocks group. Then we send the set of feature maps to the clique up-sampling module to reconstruct the HR image.


Spherical Text Embedding

Neural Information Processing Systems

Unsupervised text embedding has shown great power in a wide range of NLP tasks. While text embeddings are typically learned in the Euclidean space, directional similarity is often more effective in tasks such as word similarity and document clustering, which creates a gap between the training stage and usage stage of text embedding. To close this gap, we propose a spherical generative model based on which unsupervised word and paragraph embeddings are jointly learned. To learn text embeddings in the spherical space, we develop an efficient optimization algorithm with convergence guarantee based on Riemannian optimization. Our model enjoys high efficiency and achieves state-of-the-art performances on various text embedding tasks including word similarity and document clustering.


Multimodal Intelligence: Representation Learning, Information Fusion, and Applications

arXiv.org Artificial Intelligence

Deep learning has revolutionized speech recognition, image recognition, and natural language processing since 2010, each involving a single modality in the input signal. However, many applications in artificial intelligence involve more than one modality. It is therefore of broad interest to study the more difficult and complex problem of modeling and learning across multiple modalities. In this paper, a technical review of the models and learning methods for multimodal intelligence is provided. The main focus is the combination of vision and natural language, which has become an important area in both computer vision and natural language processing research communities. This review provides a comprehensive analysis of recent work on multimodal deep learning from three new angles - learning multimodal representations, the fusion of multimodal signals at various levels, and multimodal applications. On multimodal representation learning, we review the key concept of embedding, which unifies the multimodal signals into the same vector space and thus enables cross-modality signal processing. We also review the properties of the many types of embedding constructed and learned for general downstream tasks. On multimodal fusion, this review focuses on special architectures for the integration of the representation of unimodal signals for a particular task. On applications, selected areas of a broad interest in current literature are covered, including caption generation, text-to-image generation, and visual question answering. We believe this review can facilitate future studies in the emerging field of multimodal intelligence for the community.


Spherical Text Embedding

arXiv.org Machine Learning

Unsupervised text embedding has shown great power in a wide range of NLP tasks. While text embeddings are typically learned in the Euclidean space, directional similarity is often more effective in tasks such as word similarity and document clustering, which creates a gap between the training stage and usage stage of text embedding. To close this gap, we propose a spherical generative model based on which unsupervised word and paragraph embeddings are jointly learned. To learn text embeddings in the spherical space, we develop an efficient optimization algorithm with convergence guarantee based on Riemannian optimization. Our model enjoys high efficiency and achieves state-of-the-art performances on various text embedding tasks including word similarity and document clustering.


Efficient Projection-Free Online Methods with Stochastic Recursive Gradient

arXiv.org Machine Learning

This paper focuses on projection-free methods for solving smooth Online Convex Optimization (OCO) problems. Existing projection-free methods either achieve suboptimal reg ret bounds or have high per-iteration computational costs. To fi ll this gap, two efficient projection-free online methods call ed ORGFW and MORGFW are proposed for solving stochastic and adversarial OCO problems, respectively. By employing a recursive gradient estimator, our methods achieve optimal regret bounds (up to a logarithmic factor) while possessing low per-iteration computational costs. Experimen tal results demonstrate the efficiency of the proposed methods compared to state-of-the-arts.


Aggregated Gradient Langevin Dynamics

arXiv.org Machine Learning

In this paper, we explore a general Aggregated Gradient Langevin Dynamics framework (AGLD) for the Markov Chain Monte Carlo (MCMC) sampling. We investigate the nonasymptotic convergence of AGLD with a unified analysis for different data accessing (e.g. random access, cyclic access and random reshuffle) and snapshot updating strategies, under convex and nonconvex settings respectively. It is the first time that bounds for I/O friendly strategies such as cyclic access and random reshuffle have been established in the MCMC literature. The theoretic results also indicate that methods in AGLD possess the merits of both the low per-iteration computational complexity and the short mixture time. Empirical studies demonstrate that our framework allows to derive novel schemes to generate high-quality samples for large-scale Bayesian posterior learning tasks.


HiExpan: Task-Guided Taxonomy Construction by Hierarchical Tree Expansion

arXiv.org Artificial Intelligence

Taxonomies are of great value to many knowledge-rich applications. As the manual taxonomy curation costs enormous human effects, automatic taxonomy construction is in great demand. However, most existing automatic taxonomy construction methods can only build hypernymy taxonomies wherein each edge is limited to expressing the "is-a" relation. Such a restriction limits their applicability to more diverse real-world tasks where the parent-child may carry different relations. In this paper, we aim to construct a task-guided taxonomy from a domain-specific corpus and allow users to input a "seed" taxonomy, serving as the task guidance. We propose an expansion-based taxonomy construction framework, namely HiExpan, which automatically generates key term list from the corpus and iteratively grows the seed taxonomy. Specifically, HiExpan views all children under each taxonomy node forming a coherent set and builds the taxonomy by recursively expanding all these sets. Furthermore, HiExpan incorporates a weakly-supervised relation extraction module to extract the initial children of a newly-expanded node and adjusts the taxonomy tree by optimizing its global structure. Our experiments on three real datasets from different domains demonstrate the effectiveness of HiExpan for building task-guided taxonomies.