Goto

Collaborating Authors

Yao, Jiayu


Power-Constrained Bandits

arXiv.org Machine Learning

Contextual bandits often provide simple and effective personalization in decision making problems, making them popular in many domains including digital health. However, when bandits are deployed in the context of a scientific study, the aim is not only to personalize for an individual, but also to determine, with sufficient statistical power, whether or not the system's intervention is effective. In this work, we develop a set of constraints and a general meta-algorithm that can be used to both guarantee power constraints and minimize regret. Our results demonstrate a number of existing algorithms can be easily modified to satisfy the constraint without significant decrease in average return. We also show that our modification is also robust to a variety of model mis-specifications.


Quality of Uncertainty Quantification for Bayesian Neural Network Inference

arXiv.org Machine Learning

Bayesian Neural Networks (BNNs) place priors There exists a large body of work to improve the quality of over the parameters in a neural network. Inference inference for Bayesian neural networks (BNNs) by improving in BNNs, however, is difficult; all inference the approximate inference procedure (e.g. Graves 2011; methods for BNNs are approximate. In this work, Blundell et al. 2015; Hernández-Lobato et al. 2016, to name we empirically compare the quality of predictive a few), or by improving the flexibility of the variational uncertainty estimates for 10 common inference approximation for variational inference (e.g.


Output-Constrained Bayesian Neural Networks

arXiv.org Machine Learning

Bayesian neural network (BNN) priors are defined in parameter space, making it hard to encode prior knowledge expressed in function space. We formulate a prior that incorporates functional constraints about what the output can or cannot be in regions of the input space. Output-Constrained BNNs (OC-BNN) represent an interpretable approach of enforcing a range of constraints, fully consistent with the Bayesian framework and amenable to black-box inference. We demonstrate how OC-BNNs improve model robustness and prevent the prediction of infeasible outputs in two real-world applications of healthcare and robotics.


Projected BNNs: Avoiding weight-space pathologies by learning latent representations of neural network weights

arXiv.org Machine Learning

Deep learning provides a flexible framework for function approximation and, as a result, deep models have become a standard approach in many domains including machine vision, natural language processing, speech recognition, bioinformatics, and game-playing [LeCun et al., 2015]. However, deep models tend to overfit when the number of training examples is small; furthermore, in practice, the primary focus in deep learning is often on computing point estimates of model parameters, and thus these models do not provide uncertainties for their predictions - making them unsuitable for applications in critical domains such as personalized medicine. Bayesian neural networks (BNN) promise to address these issues by modeling the uncertainty in the network weights, and correspondingly, the uncertainty in output predictions[MacKay, 1992b, Neal, 2012]. Unfortunately, characterizing uncertainty over parameters of modern neural networks in a Bayesian setting is challenging due to the high-dimensionality of the weight space and complex patterns of dependencies among the weights. In these cases, Markov-chain Monte Carlo (MCMC) techniques for performing inference often fail to mix across the weight space, and standard variational approaches not only struggle to escape local optima, but also fail to capture dependencies between the weights. A recent body of work has attempted to improve the quality of inference for Bayesian neural networks (BNNs) via improved approximate inference methods [Graves, 2011, Blundell et al., 2015, Hernández-Lobato et al., 2016], or by improving the flexibility of the variational approximation for variational inference [Gershman et al., 2012, Ranganath et al., 2016, Louizos and Welling, 2017]. In this work, we introduce a novel approach in which we remove potential redundancies in neural network parameters by learning a nonlinear projection of the weights onto a low-dimensional latent space. Our approach takes advantage of the following insight: learning (standard network) parameters is easier in the high-dimensional space, but characterizing (Bayesian) uncertainty is easier in the 1 low-dimensional space. Low-dimensional spaces are generally easier to explore, especially if we have fewer correlations between dimensions, and can be better captured by standard variational approximations (e.g.


Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors

arXiv.org Machine Learning

Bayesian Neural Networks (BNNs) have recently received increasing attention for their ability to provide well-calibrated posterior uncertainties. However, model selection---even choosing the number of nodes---remains an open question. Recent work has proposed the use of a horseshoe prior over node pre-activations of a Bayesian neural network, which effectively turns off nodes that do not help explain the data. In this work, we propose several modeling and inference advances that consistently improve the compactness of the model learned while maintaining predictive performance, especially in smaller-sample settings including reinforcement learning.


Evaluating Reinforcement Learning Algorithms in Observational Health Settings

arXiv.org Machine Learning

Much attention has been devoted recently to the development of machine learning algorithms with the goal of improving treatment policies in healthcare. Reinforcement learning (RL) is a sub-field within machine learning that is concerned with learning how to make sequences of decisions so as to optimize long-term effects. Already, RL algorithms have been proposed to identify decision-making strategies for mechanical ventilation, sepsis management and treatment of schizophrenia. However, before implementing treatment policies learned by black-box algorithms in high-stakes clinical decision problems, special care must be taken in the evaluation of these policies. In this document, our goal is to expose some of the subtleties associated with evaluating RL algorithms in healthcare. We aim to provide a conceptual starting point for clinical and computational researchers to ask the right questions when designing and evaluating algorithms for new ways of treating patients. In the following, we describe how choices about how to summarize a history, variance of statistical estimators, and confounders in more ad-hoc measures can result in unreliable, even misleading estimates of the quality of a treatment policy. We also provide suggestions for mitigating these effects---for while there is much promise for mining observational health data to uncover better treatment policies, evaluation must be performed thoughtfully.