Collaborating Authors

Xu, Xiaoran

Dynamically Pruned Message Passing Networks for Large-Scale Knowledge Graph Reasoning Artificial Intelligence

We propose Dynamically Pruned Message Passing Networks (DPMPN) for large-scale knowledge graph reasoning. In contrast to existing models, embedding-based or path-based, we learn an input-dependent subgraph to explicitly model a sequential reasoning process. Each subgraph is dynamically constructed, expanding itself selectively under a flow-style attention mechanism. In this way, we can not only construct graphical explanations to interpret prediction, but also prune message passing in Graph Neural Networks (GNNs) to scale with the size of graphs. We take the inspiration from the consciousness prior proposed by Bengio to design a two-GNN framework to encode global input-invariant graph-structured representation and learn local input-dependent one coordinated by an attention module. Experiments show the reasoning capability in our model that is providing a clear graphical explanation as well as predicting results accurately, outperforming most state-of-the-art methods in knowledge base completion tasks.

Neural Consciousness Flow Artificial Intelligence

The ability of reasoning beyond data fitting is substantial to deep learning systems in order to make a leap forward towards artificial general intelligence. A lot of efforts have been made to model neural-based reasoning as an iterative decision-making process based on recurrent networks and reinforcement learning. Instead, inspired by the consciousness prior proposed by Yoshua Bengio, we explore reasoning with the notion of attentive awareness from a cognitive perspective, and formulate it in the form of attentive message passing on graphs, called neural consciousness flow (NeuCFlow). Aiming to bridge the gap between deep learning systems and reasoning, we propose an attentive computation framework with a three-layer architecture, which consists of an unconsciousness flow layer, a consciousness flow layer, and an attention flow layer. We implement the NeuCFlow model with graph neural networks (GNNs) and conditional transition matrices. Our attentive computation greatly reduces the complexity of vanilla GNN-based methods, capable of running on large-scale graphs. We validate our model for knowledge graph reasoning by solving a series of knowledge base completion (KBC) tasks. The experimental results show NeuCFlow significantly outperforms previous state-of-the-art KBC methods, including the embedding-based and the path-based. The reproducible code can be found by the link below.

Modeling Attention Flow on Graphs Artificial Intelligence

Real-world scenarios demand reasoning about process, more than final outcome prediction, to discover latent causal chains and better understand complex systems. It requires the learning algorithms to offer both accurate predictions and clear interpretations. We design a set of trajectory reasoning tasks on graphs with only the source and the destination observed. We present the attention flow mechanism to explicitly model the reasoning process, leveraging the relational inductive biases by basing our models on graph networks. We study the way attention flow can effectively act on the underlying information flow implemented by message passing. Experiments demonstrate that the attention flow driven by and interacting with graph networks can provide higher accuracy in prediction and better interpretation for trajectories reasoning.

Backprop-Q: Generalized Backpropagation for Stochastic Computation Graphs Artificial Intelligence

In real-world scenarios, it is appealing to learn a model carrying out stochastic operations internally, known as stochastic computation graphs (SCGs), rather than learning a deterministic mapping. However, standard backpropagation is not applicable to SCGs. We attempt to address this issue from the angle of cost propagation, with local surrogate costs, called Q-functions, constructed and learned for each stochastic node in an SCG. Then, the SCG can be trained based on these surrogate costs using standard backpropagation. We propose the entire framework as a solution to generalize backpropagation for SCGs, which resembles an actor-critic architecture but based on a graph. For broad applicability, we study a variety of SCG structures from one cost to multiple costs. We utilize recent advances in reinforcement learning (RL) and variational Bayes (VB), such as off-policy critic learning and unbiased-and-low-variance gradient estimation, and review them in the context of SCGs. The generalized backpropagation extends transported learning signals beyond gradients between stochastic nodes while preserving the benefit of backpropagating gradients through deterministic nodes. Experimental suggestions and concerns are listed to help design and test any specific model using this framework.