Wellman, M. P.


From knowledge bases to decision models

Classics

In recent years there has been a growing interest among AI researchers in probabilistic and decision modelling, spurred by significant advances in representation and computation with network modelling formalisms. In applying these techniques to decision support tasks, fixed network models have proven to be inadequately expressive when a broad range of situations must be handled. Hence many researchers have sought to combine the strengths of flexible knowledge representation languages with the normative status and well-understood computational properties of decision-modelling formalisms and algorithms. We have developed several systems adopting this approach, which illustrate a variety of interesting techniques and design issues.