Collaborating Authors

Wei, Furu

Neural Melody Composition from Lyrics Artificial Intelligence

In this paper, we study a novel task that learns to compose music from natural language. Given the lyrics as input, we propose a melody composition model that generates lyrics-conditional melody as well as the exact alignment between the generated melody and the given lyrics simultaneously. More specifically, we develop the melody composition model based on the sequence-to-sequence framework. It consists of two neural encoders to encode the current lyrics and the context melody respectively, and a hierarchical decoder to jointly produce musical notes and the corresponding alignment. Experimental results on lyrics-melody pairs of 18,451 pop songs demonstrate the effectiveness of our proposed methods. In addition, we apply a singing voice synthesizer software to synthesize the "singing" of the lyrics and melodies for human evaluation. Results indicate that our generated melodies are more melodious and tuneful compared with the baseline method.

Neural Latent Extractive Document Summarization Artificial Intelligence

Extractive summarization models require sentence-level labels, which are usually created heuristically (e.g., with rule-based methods) given that most summarization datasets only have document-summary pairs. Since these labels might be suboptimal, we propose a latent variable extractive model where sentences are viewed as latent variables and sentences with activated variables are used to infer gold summaries. During training the loss comes \emph{directly} from gold summaries. Experiments on the CNN/Dailymail dataset show that our model improves over a strong extractive baseline trained on heuristically approximated labels and also performs competitively to several recent models.

Reaching Human-level Performance in Automatic Grammatical Error Correction: An Empirical Study Artificial Intelligence

Neural sequence-to-sequence (seq2seq) approaches have proven to be successful in grammatical error correction (GEC). Based on the seq2seq framework, we propose a novel fluency boost learning and inference mechanism. Fluency boosting learning generates diverse error-corrected sentence pairs during training, enabling the error correction model to learn how to improve a sentence's fluency from more instances, while fluency boosting inference allows the model to correct a sentence incrementally with multiple inference steps. Combining fluency boost learning and inference with convolutional seq2seq models, our approach achieves the state-of-the-art performance: 75.72 (F_{0.5}) on CoNLL-2014 10 annotation dataset and 62.42 (GLEU) on JFLEG test set respectively, becoming the first GEC system that reaches human-level performance (72.58 for CoNLL and 62.37 for JFLEG) on both of the benchmarks.

Faithful to the Original: Fact Aware Neural Abstractive Summarization

AAAI Conferences

Unlike extractive summarization, abstractive summarization has to fuse different parts of the source text, which inclines to create fake facts. Our preliminary study reveals nearly 30% of the outputs from a state-of-the-art neural summarization system suffer from this problem. While previous abstractive summarization approaches usually focus on the improvement of informativeness, we argue that faithfulness is also a vital prerequisite for a practical abstractive summarization system. To avoid generating fake facts in a summary, we leverage open information extraction and dependency parse technologies to extract actual fact descriptions from the source text. The dual-attention sequence-to-sequence framework is then proposed to force the generation conditioned on both the source text and the extracted fact descriptions. Experiments on the Gigaword benchmark dataset demonstrate that our model can greatly reduce fake summaries by 80%. Notably, the fact descriptions also bring significant improvement on informativeness since they often condense the meaning of the source text.

Hierarchical Attention Flow for Multiple-Choice Reading Comprehension

AAAI Conferences

In this paper, we focus on multiple-choice reading comprehension which aims to answer a question given a passage and multiple candidate options. We present the hierarchical attention flow to adequately leverage candidate options to model the interactions among passages, questions and candidate options. We observe that leveraging candidate options to boost evidence gathering from the passages play a vital role in this task, which is ignored in previous works. In addition, we explicitly model the option correlations with attention mechanism to obtain better option representations, which are further fed into a bilinear layer to obtain the ranking score for each option. On a large-scale multiple-choice reading comprehension dataset (i.e. the RACE dataset), the proposed model outperforms two previous neural network baselines on both RACE-M and RACE-H subsets and yields the state-of-the-art overall results.

S-Net: From Answer Extraction to Answer Synthesis for Machine Reading Comprehension

AAAI Conferences

In this paper, we present a novel approach to machine reading comprehension for the MS-MARCO dataset. Unlike the SQuAD dataset that aims to answer a question with exact text spans in a passage, the MS-MARCO dataset defines the task as answering a question from multiple passages and the words in the answer are not necessary in the passages. We therefore develop an extraction-then-synthesis framework to synthesize answers from extraction results. Specifically, the answer extraction model is first employed to predict the most important sub-spans from the passage as evidence, and the answer synthesis model takes the evidence as additional features along with the question and passage to further elaborate the final answers. We build the answer extraction model with state-of-the-art neural networks for single passage reading comprehension, and propose an additional task of passage ranking to help answer extraction in multiple passages. The answer synthesis model is based on the sequence-to-sequence neural networks with extracted evidences as features. Experiments show that our extraction-then-synthesis method outperforms state-of-the-art methods.

Sequential Copying Networks

AAAI Conferences

Copying mechanism shows effectiveness in sequence-to-sequence based neural network models for text generation tasks, such as abstractive sentence summarization and question generation. However, existing works on modeling copying or pointing mechanism only considers single word copying from the source sentences. In this paper, we propose a novel copying framework, named Sequential Copying Networks (SeqCopyNet), which not only learns to copy single words, but also copies sequences from the input sentence. It leverages the pointer networks to explicitly select a sub-span from the source side to target side, and integrates this sequential copying mechanism to the generation process in the encoder-decoder paradigm. Experiments on abstractive sentence summarization and question generation tasks show that the proposed SeqCopyNet can copy meaningful spans and outperforms the baseline models.

Improving Multi-Document Summarization via Text Classification

AAAI Conferences

Developed so far, multi-document summarization has reached its bottleneck due to the lack of sufficient training data and diverse categories of documents. Text classification just makes up for these deficiencies. In this paper, we propose a novel summarization system called TCSum, which leverages plentiful text classification data to improve the performance of multi-document summarization. TCSum projects documents onto distributed representations which act as a bridge between text classification and summarization. It also utilizes the classification results to produce summaries of different styles. Extensive experiments on DUC generic multi-document summarization datasets show that, TCSum can achieve the state-of-the-art performance without using any hand-crafted features and has the capability to catch the variations of summary styles with respect to different text categories.

TGSum: Build Tweet Guided Multi-Document Summarization Dataset

AAAI Conferences

The development of summarization research has been significantly hampered by the costly acquisition of reference summaries. This paper proposes an effective way to automatically collect large scales of news-related multi-document summaries with reference to social media's reactions. We utilize two types of social labels in tweets, i.e., hashtags and hyper-links. Hashtags are used to cluster documents into different topic sets. Also, a tweet with a hyper-link often highlights certain key points of the corresponding document. We synthesize a linked document cluster to form a reference summary which can cover most key points. To this aim, we adopt the ROUGE metrics to measure the coverage ratio, and develop an Integer Linear Programming solution to discover the sentence set reaching the upper bound of ROUGE. Since we allow summary sentences to be selected from both documents and high-quality tweets, the generated reference summaries could be abstractive. Both informativeness and readability of the collected summaries are verified by manual judgment. In addition, we train a Support Vector Regression summarizer on DUC generic multi-document summarization benchmarks. With the collected data as extra training resource, the performance of the summarizer improves a lot on all the test sets. We release this dataset for further research.