Walsh, Toby



Algorithms for Max-Min Share Fair Allocation of Indivisible Chores

AAAI Conferences

We consider Max-min Share (MmS) fair allocations of indivisible chores (items with negative utilities). We show that allocation of chores and classical allocation of goods (items with positive utilities) have some fundamental connections but also differences which prevent a straightforward application of algorithms for goods in the chores setting and vice-versa. We prove that an MmS allocation does not need to exist for chores and computing an MmS allocation - if it exists - is strongly NP-hard. In view of these non-existence and complexity results, we present a polynomial-time 2-approximation algorithm for MmS fairness for chores. We then introduce a new fairness concept called optimal MmS that represents the best possible allocation in terms of MmS that is guaranteed to exist. We use connections to parallel machine scheduling to give (1) a polynomial-time approximation scheme for computing an optimal MmS allocation when the number of agents is fixed and (2) an effective and efficient heuristic with an ex-post worst-case analysis.


Reports of the 2016 AAAI Workshop Program

AI Magazine

The Workshop Program of the Association for the Advancement of Artificial Intelligence's Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) was held at the beginning of the conference, February 12-13, 2016. Workshop participants met and discussed issues with a selected focus -- providing an informal setting for active exchange among researchers, developers and users on topics of current interest. To foster interaction and exchange of ideas, the workshops were kept small, with 25-65 participants. Attendance was sometimes limited to active participants only, but most workshops also allowed general registration by other interested individuals.


Reports of the 2016 AAAI Workshop Program

AI Magazine

The Workshop Program of the Association for the Advancement of Artificial Intelligence’s Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) was held at the beginning of the conference, February 12-13, 2016. Workshop participants met and discussed issues with a selected focus — providing an informal setting for active exchange among researchers, developers and users on topics of current interest. To foster interaction and exchange of ideas, the workshops were kept small, with 25-65 participants. Attendance was sometimes limited to active participants only, but most workshops also allowed general registration by other interested individuals. The AAAI-16 Workshops were an excellent forum for exploring emerging approaches and task areas, for bridging the gaps between AI and other fields or between subfields of AI, for elucidating the results of exploratory research, or for critiquing existing approaches. The fifteen workshops held at AAAI-16 were Artificial Intelligence Applied to Assistive Technologies and Smart Environments (WS-16-01), AI, Ethics, and Society (WS-16-02), Artificial Intelligence for Cyber Security (WS-16-03), Artificial Intelligence for Smart Grids and Smart Buildings (WS-16-04), Beyond NP (WS-16-05), Computer Poker and Imperfect Information Games (WS-16-06), Declarative Learning Based Programming (WS-16-07), Expanding the Boundaries of Health Informatics Using AI (WS-16-08), Incentives and Trust in Electronic Communities (WS-16-09), Knowledge Extraction from Text (WS-16-10), Multiagent Interaction without Prior Coordination (WS-16-11), Planning for Hybrid Systems (WS-16-12), Scholarly Big Data: AI Perspectives, Challenges, and Ideas (WS-16-13), Symbiotic Cognitive Systems (WS-16-14), and World Wide Web and Population Health Intelligence (WS-16-15).


Strategic Behaviour When Allocating Indivisible Goods

AAAI Conferences

We survey some recent research regarding strategic behaviour in resource allocation problems, focusing on the fair division of indivisible goods. We consider a number of computational questions like how a single strategic agent misreports their preferences to ensure a particular outcome, and how agents compute a Nash equilibrium when they all act strategically. We also identify a number of future directions like dealing with non-additive utilities, and partial or probabilistic information about the preferences of other agents.


Strategyproof Peer Selection: Mechanisms, Analyses, and Experiments

AAAI Conferences

We study an important crowdsourcing setting where agents evaluate one another and, based on these evaluations, a subset of agents are selected. This setting is ubiquitous when peer review is used for distributing awards in a team, allocating funding to scientists, and selecting publications for conferences. The fundamental challenge when applying crowdsourcing in these settings is that agents may misreport their reviews of others to increase their chances of being selected. We propose a new strategyproof (impartial) mechanism called Dollar Partition that satisfies desirable axiomatic properties. We then show, using a detailed experiment with parameter values derived from target real world domains, that our mechanism performs better on average, and in the worst case, than other strategyproof mechanisms in the literature.


Reports on the 2015 AAAI Workshop Program

AI Magazine

AAAI's 2015 Workshop Program was held Sunday and Monday, January 25–26, 2015 at the Hyatt Regency Austin Hotel in Austion, Texas, USA. The AAAI-15 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. Most workshops were held on a single day. The titles of the workshops included AI and Ethics, AI for Cities, AI for Transportation: Advice, Interactivity and Actor Modeling, Algorithm Configuration, Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Beyond the Turing Test, Computational Sustainability, Computer Poker and Imperfect Information, Incentive and Trust in E-Communities, Multiagent Interaction without Prior Coordination, Planning, Search, and Optimization, Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Trajectory-Based Behaviour Analytics, World Wide Web and Public Health Intelligence, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, and Learning for General Competency in Video Games.


Reports on the 2015 AAAI Workshop Program

AI Magazine

AAAI's 2015 Workshop Program was held Sunday and Monday, January 25–26, 2015 at the Hyatt Regency Austin Hotel in Austion, Texas, USA. The AAAI-15 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. Most workshops were held on a single day. The titles of the workshops included AI and Ethics, AI for Cities, AI for Transportation: Advice, Interactivity and Actor Modeling, Algorithm Configuration, Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Beyond the Turing Test, Computational Sustainability, Computer Poker and Imperfect Information, Incentive and Trust in E-Communities, Multiagent Interaction without Prior Coordination, Planning, Search, and Optimization, Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Trajectory-Based Behaviour Analytics, World Wide Web and Public Health Intelligence, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, and Learning for General Competency in Video Games.


Parliamentary Voting Procedures: Agenda Control, Manipulation, and Uncertainty

AAAI Conferences

We study computational problems for two popular parliamentary voting procedures: the amendment procedure and the successive procedure. While finding successful manipulations or agenda controls is tractable for both procedures, our real-world experimental results indicate that most elections cannot be manipulated by a few voters and agenda control is typically impossible. If the voter preferences are incomplete, then finding possible winners is NP-hard for both procedures. Whereas finding necessary winners is coNP-hard for the amendment procedure, it is polynomial-time solvable for the successive one.


Online Fair Division: Analysing a Food Bank Problem

AAAI Conferences

We study an online model of fair division designed to capture features of a real world charity problem. We consider two simple mechanisms for this model in which agents simply declare what items they like. We analyse axiomatic properties of these mechanisms such as strategy-proofness and envy freeness. Finally, we perform a competitive analysis and compute the price of anarchy.