Veloso, Manuela M.


Factored Models for Multiscale Decision-Making in Smart Grid Customers

AAAI Conferences

Active participation of customers in the management of demand, and renewable energy supply, is a critical goal of the Smart Grid vision. However, this is a complex problem with numerous scenarios that are difficult to test in field projects. Rich and scalable simulations are required to develop effective strategies and policies that elicit desirable behavior from customers. We present a versatile agent-based "factored model" that enables rich simulation scenarios across distinct customer types and varying agent granularity. We formally characterize the decisions to be made by Smart Grid customers as a multiscale decision-making problem and show how our factored model representation handles several temporal and contextual decisions by introducing a novel "utility optimizing agent." We further contribute innovative algorithms for (i) statistical learning-based hierarchical Bayesian timeseries simulation, and (ii) adaptive capacity control using decision-theoretic approximation of multiattribute utility functions over multiple agents. Prominent among the approaches being studied to achieve active customer participation is one based on offering customers financial incentives through variable-price tariffs; we also contribute an effective solution to the problem of "customer herding" under such tariffs. We support our contributions with experimental results from simulations based on real-world data on an open Smart Grid simulation platform.


Learned Behaviors of Multiple Autonomous Agents in Smart Grid Markets

AAAI Conferences

One proposed approach to managing a large complex Smart Grid is through Broker Agents who buy electrical power from distributed producers, and also sell power to consumers, via a Tariff Market--a new market mechanism where Broker Agents publish concurrent bid and ask prices. A key challenge is the specification of the market strategy that the Broker Agents should use in order to earn profits while maintaining the market's balance of supply and demand. Interestingly, previous work has shown that a Broker Agent can learn its strategy, using Markov Decision Processes (MDPs) and Q-learning, and outperform other Broker Agents that use predetermined or randomized strategies. In this work, we investigate the more representative scenario in which multiple Broker Agents, instead of a single one, are independently learning their strategies. Using a simulation environment based on real data, we find that Broker Agents who employ periodic increases in exploration achieve higher rewards. We also find that varying levels of market dominance in customer allocation models result in remarkably distinct outcomes in market prices and aggregate Broker Agent rewards. The latter set of results can be explained by established economic principles regarding the emergence of monopolies in market-based competition, further validating our approach.


Strategy Learning for Autonomous Agents in Smart Grid Markets

AAAI Conferences

Distributed electricity producers, such as small wind farms and solar installations, pose several technical and economic challenges in Smart Grid design. One approach to addressing these challenges is through Broker Agents who buy electricity from distributed producers, and also sell electricity to consumers, via a Tariff Market--a new market mechanism where Broker Agents publish concurrent bid and ask prices. We investigate the learning of pricing strategies for an autonomous Broker Agent to profitably participate in a Tariff Market. We employ Markov Decision Processes (MDPs) and reinforcement learning. An important concern with this method is that even simple representations of the problem domain result in very large numbers of states in the MDP formulation because market prices can take nearly arbitrary real values. In this paper, we present the use of derived state space features, computed using statistics on Tariff Market prices and Broker Agent customer portfolios, to obtain a scalable state representation. We also contribute a set of pricing tactics that form building blocks in the learned Broker Agent strategy. We further present a Tariff Market simulation model based on real-world data and anticipated market dynamics. We use this model to obtain experimental results that show the learned strategy performing vastly better than a random strategy and significantly better than two other non-learning strategies.


A Report on the IJCAI-07 Program

AI Magazine

In this article, I report on the primary features of the IJCAI-07 program, including its theme, schedule, and organization. In particular, I discuss an effective and novel presentation format at IJCAI in which oral and poster papers were presented in the same sessions categorized by topic area.


CMRoboBits: Creating an Intelligent AIBO Robot

AI Magazine

CMRoboBits is a course offered at Carnegie Mellon University that introduces students to all the concepts needed to create a complete intelligent robot. This course shows how an AIBO and its software resources make it possible for students to investigate and work with an unusually broad variety of AI topics within a single semester. While material presented in this article describes using AIBOs as the primary platform, the concepts presented in the course are not unique to the AIBO and can be applied on different kinds of robotic hardware.


CMRoboBits: Creating an Intelligent AIBO Robot

AI Magazine

CMRoboBits is a course offered at Carnegie Mellon University that introduces students to all the concepts needed to create a complete intelligent robot. In particular, the course focuses on the areas of perception, cognition, and action by using the Sony AIBO robot as the focus for the programming assignments. This course shows how an AIBO and its software resources make it possible for students to investigate and work with an unusually broad variety of AI topics within a single semester. While material presented in this article describes using AIBOs as the primary platform, the concepts presented in the course are not unique to the AIBO and can be applied on different kinds of robotic hardware.


The Twentieth National Conference on Artificial Intelligence

AI Magazine

The Twentieth National Conference on Artificial Intelligence was held July 9-13, 2005, in Pittsburgh, Pennsylvania. The conference, which marked the twenty-fifth anniversary of the Association for the Advancement of Artificial Intelligence (AAAI), received 803 submissions to the technical program. All papers were double-blind reviewed, and 150 papers were accepted for oral presentation, while 79 papers were accepted for poster presentation. The keynote address was delivered by Marvin Minsky.


The Twentieth National Conference on Artificial Intelligence

AI Magazine

The Twentieth National Conference on Artificial Intelligence was held July 9-13, 2005, in Pittsburgh, Pennsylvania. The conference, which marked the twenty-fifth anniversary of the Association for the Advancement of Artificial Intelligence (AAAI), received 803 submissions to the technical program. All papers were double-blind reviewed, and 150 papers were accepted for oral presentation, while 79 papers were accepted for poster presentation. The keynote address was delivered by Marvin Minsky.


RoboCup-2001: The Fifth Robotic Soccer World Championships

AI Magazine

RoboCup-2001 was the Fifth International RoboCup Competition and Conference. It was held for the first time in the United States, following RoboCup-2000 in Melbourne, Australia; RoboCup-99 in Stockholm; RoboCup-98 in Paris; and RoboCup-97 in Osaka.


RoboCup-2001: The Fifth Robotic Soccer World Championships

AI Magazine

RoboCup-2001 was the Fifth International RoboCup Competition and Conference. It was held for the first time in the United States, following RoboCup-2000 in Melbourne, Australia; RoboCup-99 in Stockholm; RoboCup-98 in Paris; and RoboCup-97 in Osaka. This article discusses in detail each one of the events at RoboCup-2001, focusing on the competition leagues.