Veloso, Manuela


The Impact of Humanoid Affect Expression on Human Behavior in a Game-Theoretic Setting

arXiv.org Artificial Intelligence

With the rapid development of robot and other intelligent and autonomous agents, how a human could be influenced by a robot's expressed mood when making decisions becomes a crucial question in human-robot interaction. In this pilot study, we investigate (1) in what way a robot can express a certain mood to influence a human's decision making behavioral model; (2) how and to what extent the human will be influenced in a game theoretic setting. More specifically, we create an NLP model to generate sentences that adhere to a specific affective expression profile. We use these sentences for a humanoid robot as it plays a Stackelberg security game against a human. We investigate the behavioral model of the human player.


Understanding Convolutional Networks with APPLE : Automatic Patch Pattern Labeling for Explanation

arXiv.org Machine Learning

With the success of deep learning, recent efforts have been focused on analyzing how learned networks make their classifications. We are interested in analyzing the network output based on the network structure and information flow through the network layers. We contribute an algorithm for 1) analyzing a deep network to find neurons that are 'important' in terms of the network classification outcome, and 2)automatically labeling the patches of the input image that activate these important neurons. We propose several measures of importance for neurons and demonstrate that our technique can be used to gain insight into, and explain how a network decomposes an image to make its final classification.


Towards Visual Explanations for Convolutional Neural Networks via Input Resampling

arXiv.org Machine Learning

The predictive power of neural networks often costs model interpretability. Several techniques have been developed for explaining model outputs in terms of input features; however, it is difficult to translate such interpretations into actionable insight. Here, we propose a framework to analyze predictions in terms of the model's internal features by inspecting information flow through the network. Given a trained network and a test image, we select neurons by two metrics, both measured over a set of images created by perturbations to the input image: (1) magnitude of the correlation between the neuron activation and the network output and (2) precision of the neuron activation. We show that the former metric selects neurons that exert large influence over the network output while the latter metric selects neurons that activate on generalizable features. By comparing the sets of neurons selected by these two metrics, our framework suggests a way to investigate the internal attention mechanisms of convolutional neural networks.


Online Learning of Robot Soccer Free Kick Plans Using a Bandit Approach

AAAI Conferences

This paper presents an online learning approach for teams of autonomous soccer robots to select free kick plans. In robot soccer, free kicks present an opportunity to execute plans with relatively controllable initial conditions. However, the effectiveness of each plan is highly dependent on the adversary, and there are few free kicks during each game, making it necessary to learn online from sparse observations. To achieve learning, we first greatly reduce the planning space by framing the problem as a contextual multi-armed bandit problem, in which the actions are a set of pre-computed plans, and the state is the position of the free kick on the field. During execution, we model the reward function for different free kicks using Gaussian Processes, and perform online learning using the Upper Confidence Bound algorithm. Results from a physics-based simulation reveal that the robots are capable of adapting to various different realistic opponents to maximize their expected reward during free kicks.


ClaimEval: Integrated and Flexible Framework for Claim Evaluation Using Credibility of Sources

AAAI Conferences

The World Wide Web (WWW) has become a rapidly growing platform consisting of numerous sources which provide supporting or contradictory information about claims (e.g., "Chicken meat is healthy"). In order to decide whether a claim is true or false, one needs to analyze content of different sources of information on the Web, measure credibility of information sources, and aggregate all these information. This is a tedious process and the Web search engines address only part of the overall problem, viz., producing only a list of relevant sources. In this paper, we present ClaimEval, a novel and integrated approach which given a set of claims to validate, extracts a set of pro and con arguments from the Web information sources, and jointly estimates credibility of sources and correctness of claims. ClaimEval uses Probabilistic Soft Logic (PSL), resulting in a flexible and principled framework which makes it easy to state and incorporate different forms of prior-knowledge. Through extensive experiments on real-world datasets, we demonstrate ClaimEval’s capability in determining validity of a set of claims, resulting in improved accuracy compared to state-of-the-art baselines.


Selectively Reactive Coordination for a Team of Robot Soccer Champions

AAAI Conferences

CMDragons 2015 is the champion of the RoboCup Small Size League of autonomous robot soccer. The team won all of its six games, scoring a total of 48 goals and conceding 0. This unprecedented dominant performance is the result of various features, but we particularly credit our novel offense multi-robot coordination. This paper thus presents our Selectively Reactive Coordination (SRC) algorithm, consisting of two layers: A coordinated opponent-agnostic layer enables the team to create its own plans, setting the pace of the game in offense. An individual opponent-reactive action selection layer enables the robots to maintain reactivity to different opponents. We demonstrate the effectiveness of our coordination through results from RoboCup 2015, and through controlled experiments using a physics-based simulator and an automated referee.


Beyond the Turing Test

AI Magazine

The articles in this special issue of AI Magazine include those that propose specific tests, and those that look at the challenges inherent in building robust, valid, and reliable tests for advancing the state of the art in AI.


Beyond the Turing Test

AI Magazine

The articles in this special issue of AI Magazine include those that propose specific tests, and those that look at the challenges inherent in building robust, valid, and reliable tests for advancing the state of the art in AI.


Extendable Pantograph Arms

AAAI Conferences

When designing a robot to interact with people, the decision to incorporate a robot arm may arise. In this paper, we investigate adding an inexpensive, functional arm to our mobile CoBot service robots. Specifically, we examine two-dimensional extendable pantograph arms for CoBot. Pantograph arms have intuitive kinematics and inverse kinematics. Pantograph arms are modular and adding additional linkages corresponds to simple changes in the kinematic calculations. These arms have several advantages (and disadvantages) compared to traditional robot arms. A prototype pantograph arm is currently in development and our goal is to attach a modular pantograph arm to CoBot to perform simple needed tasks, such as knocking on doors and pressing elevator buttons.


Expressive Lights for Revealing Mobile Service Robot State

AAAI Conferences

Autonomous mobile service robots move in our buildings, carrying out different tasks and traversing multiple floors. While moving and performing their tasks, these robots find themselves in a variety of states. Although speech is often used for communicating the robot’s state to humans, such communication can often be ineffective, due to the transient nature of speech. In this paper, we investigate the use of lights as a persistent visualization of the robot’s state in relation to both tasks and environmental factors. Programmable lights offer a large degree of choices in terms of animation pattern, color and speed. We present this space of choices and introduce different animation profiles that we consider to animate a set of programmable lights on the robot. We conduct experiments to query about suitable animations for three representative scenarios of an autonomous symbiotic service robot, CoBot. Our work enables CoBot to make its states persistently visible to the humans it interacts with.