Goto

Collaborating Authors

Topcu, Ufuk


Class-Aware Generative Adversarial Transformers for Medical Image Segmentation

arXiv.org Artificial Intelligence

Transformers have made remarkable progress towards modeling long-range dependencies within the medical image analysis domain. However, current transformer-based models suffer from several disadvantages: (1) existing methods fail to capture the important features of the images due to the naive tokenization scheme; (2) the models suffer from information loss because they only consider single-scale feature representations; and (3) the segmentation label maps generated by the models are not accurate enough without considering rich semantic contexts and anatomical textures. In this work, we present CA-GANformer, a novel type of generative adversarial transformers, for medical image segmentation. First, we take advantage of the pyramid structure to construct multi-scale representations and handle multi-scale variations. We then design a novel class-aware transformer module to better learn the discriminative regions of objects with semantic structures. Lastly, we utilize an adversarial training strategy that boosts segmentation accuracy and correspondingly allows a transformer-based discriminator to capture high-level semantically correlated contents and low-level anatomical features. Our experiments demonstrate that CA-GANformer dramatically outperforms previous state-of-the-art transformer-based approaches on three benchmarks, obtaining 2.54%-5.88% absolute improvements in Dice over previous models. Further qualitative experiments provide a more detailed picture of the model's inner workings, shed light on the challenges in improved transparency, and demonstrate that transfer learning can greatly improve performance and reduce the size of medical image datasets in training, making CA-GANformer a strong starting point for downstream medical image analysis tasks. Codes and models will be available to the public.


Planning Not to Talk: Multiagent Systems that are Robust to Communication Loss

arXiv.org Artificial Intelligence

In a cooperative multiagent system, a collection of agents executes a joint policy in order to achieve some common objective. The successful deployment of such systems hinges on the availability of reliable inter-agent communication. However, many sources of potential disruption to communication exist in practice, such as radio interference, hardware failure, and adversarial attacks. In this work, we develop joint policies for cooperative multiagent systems that are robust to potential losses in communication. More specifically, we develop joint policies for cooperative Markov games with reach-avoid objectives. First, we propose an algorithm for the decentralized execution of joint policies during periods of communication loss. Next, we use the total correlation of the state-action process induced by a joint policy as a measure of the intrinsic dependencies between the agents. We then use this measure to lower-bound the performance of a joint policy when communication is lost. Finally, we present an algorithm that maximizes a proxy to this lower bound in order to synthesize minimum-dependency joint policies that are robust to communication loss. Numerical experiments show that the proposed minimum-dependency policies require minimal coordination between the agents while incurring little to no loss in performance; the total correlation value of the synthesized policy is one fifth of the total correlation value of the baseline policy which does not take potential communication losses into account. As a result, the performance of the minimum-dependency policies remains consistently high regardless of whether or not communication is available. By contrast, the performance of the baseline policy decreases by twenty percent when communication is lost.


Task-Aware Verifiable RNN-Based Policies for Partially Observable Markov Decision Processes

Journal of Artificial Intelligence Research

Partially observable Markov decision processes (POMDPs) are models for sequential decision-making under uncertainty and incomplete information. Machine learning methods typically train recurrent neural networks (RNN) as effective representations of POMDP policies that can efficiently process sequential data. However, it is hard to verify whether the POMDP driven by such RNN-based policies satisfies safety constraints, for instance, given by temporal logic specifications. We propose a novel method that combines techniques from machine learning with the field of formal methods: training an RNN-based policy and then automatically extracting a so-called finite-state controller (FSC) from the RNN. Such FSCs offer a convenient way to verify temporal logic constraints. Implemented on a POMDP, they induce a Markov chain, and probabilistic verification methods can efficiently check whether this induced Markov chain satisfies a temporal logic specification. Using such methods, if the Markov chain does not satisfy the specification, a byproduct of verification is diagnostic information about the states in the POMDP that are critical for the specification. The method exploits this diagnostic information to either adjust the complexity of the extracted FSC or improve the policy by performing focused retraining of the RNN. The method synthesizes policies that satisfy temporal logic specifications for POMDPs with up to millions of states, which are three orders of magnitude larger than comparable approaches.


Non-Parametric Neuro-Adaptive Coordination of Multi-Agent Systems

arXiv.org Artificial Intelligence

We develop a learning-based algorithm for the distributed formation control of networked multi-agent systems governed by unknown, nonlinear dynamics. Most existing algorithms either assume certain parametric forms for the unknown dynamic terms or resort to unnecessarily large control inputs in order to provide theoretical guarantees. The proposed algorithm avoids these drawbacks by integrating neural network-based learning with adaptive control in a two-step procedure. In the first step of the algorithm, each agent learns a controller, represented as a neural network, using training data that correspond to a collection of formation tasks and agent parameters. These parameters and tasks are derived by varying the nominal agent parameters and the formation specifications of the task in hand, respectively. In the second step of the algorithm, each agent incorporates the trained neural network into an online and adaptive control policy in such a way that the behavior of the multi-agent closed-loop system satisfies a user-defined formation task. Both the learning phase and the adaptive control policy are distributed, in the sense that each agent computes its own actions using only local information from its neighboring agents. The proposed algorithm does not use any a priori information on the agents' unknown dynamic terms or any approximation schemes. We provide formal theoretical guarantees on the achievement of the formation task.


On The Vulnerability of Recurrent Neural Networks to Membership Inference Attacks

arXiv.org Artificial Intelligence

We study the privacy implications of deploying recurrent neural networks in machine learning. We consider membership inference attacks (MIAs) in which an attacker aims to infer whether a given data record has been used in the training of a learning agent. Using existing MIAs that target feed-forward neural networks, we empirically demonstrate that the attack accuracy wanes for data records used earlier in the training history. Alternatively, recurrent networks are specifically designed to better remember their past experience; hence, they are likely to be more vulnerable to MIAs than their feed-forward counterparts. We develop a pair of MIA layouts for two primary applications of recurrent networks, namely, deep reinforcement learning and sequence-to-sequence tasks. We use the first attack to provide empirical evidence that recurrent networks are indeed more vulnerable to MIAs than feed-forward networks with the same performance level. We use the second attack to showcase the differences between the effects of overtraining recurrent and feed-forward networks on the accuracy of their respective MIAs. Finally, we deploy a differential privacy mechanism to resolve the privacy vulnerability that the MIAs exploit. For both attack layouts, the privacy mechanism degrades the attack accuracy from above 80% to 50%, which is equal to guessing the data membership uniformly at random, while trading off less than 10% utility.


Deceptive Decision-Making Under Uncertainty

arXiv.org Artificial Intelligence

We study the design of autonomous agents that are capable of deceiving outside observers about their intentions while carrying out tasks in stochastic, complex environments. By modeling the agent's behavior as a Markov decision process, we consider a setting where the agent aims to reach one of multiple potential goals while deceiving outside observers about its true goal. We propose a novel approach to model observer predictions based on the principle of maximum entropy and to efficiently generate deceptive strategies via linear programming. The proposed approach enables the agent to exhibit a variety of tunable deceptive behaviors while ensuring the satisfaction of probabilistic constraints on the behavior. We evaluate the performance of the proposed approach via comparative user studies and present a case study on the streets of Manhattan, New York, using real travel time distributions.


Simultaneous Perception-Action Design via Invariant Finite Belief Sets

arXiv.org Artificial Intelligence

Although perception is an increasingly dominant portion of the overall computational cost for autonomous systems, only a fraction of the information perceived is likely to be relevant to the current task. To alleviate these perception costs, we develop a novel simultaneous perception-action design framework wherein an agent senses only the task-relevant information. This formulation differs from that of a partially observable Markov decision process, since the agent is free to synthesize not only its policy for action selection but also its belief-dependent observation function. The method enables the agent to balance its perception costs with those incurred by operating in its environment. To obtain a computationally tractable solution, we approximate the value function using a novel method of invariant finite belief sets, wherein the agent acts exclusively on a finite subset of the continuous belief space. We solve the approximate problem through value iteration in which a linear program is solved individually for each belief state in the set, in each iteration. Finally, we prove that the value functions, under an assumption on their structure, converge to their continuous state-space values as the sample density increases.


Convex Optimization for Parameter Synthesis in MDPs

arXiv.org Artificial Intelligence

Probabilistic model checking aims to prove whether a Markov decision process (MDP) satisfies a temporal logic specification. The underlying methods rely on an often unrealistic assumption that the MDP is precisely known. Consequently, parametric MDPs (pMDPs) extend MDPs with transition probabilities that are functions over unspecified parameters. The parameter synthesis problem is to compute an instantiation of these unspecified parameters such that the resulting MDP satisfies the temporal logic specification. We formulate the parameter synthesis problem as a quadratically constrained quadratic program (QCQP), which is nonconvex and is NP-hard to solve in general. We develop two approaches that iteratively obtain locally optimal solutions. The first approach exploits the so-called convex-concave procedure (CCP), and the second approach utilizes a sequential convex programming (SCP) method. The techniques improve the runtime and scalability by multiple orders of magnitude compared to black-box CCP and SCP by merging ideas from convex optimization and probabilistic model checking. We demonstrate the approaches on a satellite collision avoidance problem with hundreds of thousands of states and tens of thousands of parameters and their scalability on a wide range of commonly used benchmarks.


Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

arXiv.org Machine Learning

Geometric median (\textsc{Gm}) is a classical method in statistics for achieving a robust estimation of the uncorrupted data; under gross corruption, it achieves the optimal breakdown point of 0.5. However, its computational complexity makes it infeasible for robustifying stochastic gradient descent (SGD) for high-dimensional optimization problems. In this paper, we show that by applying \textsc{Gm} to only a judiciously chosen block of coordinates at a time and using a memory mechanism, one can retain the breakdown point of 0.5 for smooth non-convex problems, with non-asymptotic convergence rates comparable to the SGD with \textsc{Gm}.


Verifiable and Compositional Reinforcement Learning Systems

arXiv.org Artificial Intelligence

We propose a novel framework for verifiable and compositional reinforcement learning (RL) in which a collection of RL sub-systems, each of which learns to accomplish a separate sub-task, are composed to achieve an overall task. The framework consists of a high-level model, represented as a parametric Markov decision process (pMDP) which is used to plan and to analyze compositions of sub-systems, and of the collection of low-level sub-systems themselves. By defining interfaces between the sub-systems, the framework enables automatic decompositons of task specifications, e.g., reach a target set of states with a probability of at least 0.95, into individual sub-task specifications, i.e. achieve the sub-system's exit conditions with at least some minimum probability, given that its entry conditions are met. This in turn allows for the independent training and testing of the sub-systems; if they each learn a policy satisfying the appropriate sub-task specification, then their composition is guaranteed to satisfy the overall task specification. Conversely, if the sub-task specifications cannot all be satisfied by the learned policies, we present a method, formulated as the problem of finding an optimal set of parameters in the pMDP, to automatically update the sub-task specifications to account for the observed shortcomings. The result is an iterative procedure for defining sub-task specifications, and for training the sub-systems to meet them. As an additional benefit, this procedure allows for particularly challenging or important components of an overall task to be determined automatically, and focused on, during training. Experimental results demonstrate the presented framework's novel capabilities.