Goto

Collaborating Authors

Srinivasan, Sriram


Actor-Critic Policy Optimization in Partially Observable Multiagent Environments

Neural Information Processing Systems

Optimization of parameterized policies for reinforcement learning (RL) is an important and challenging problem in artificial intelligence. Among the most common approaches are algorithms based on gradient ascent of a score function representing discounted return. In this paper, we examine the role of these policy gradient and actor-critic algorithms in partially-observable multiagent environments. We show several candidate policy update rules and relate them to a foundation of regret minimization and multiagent learning techniques for the one-shot and tabular cases, leading to previously unknown convergence guarantees. We apply our method to model-free multiagent reinforcement learning in adversarial sequential decision problems (zero-sum imperfect information games), using RL-style function approximation.


Unifying Count-Based Exploration and Intrinsic Motivation

Neural Information Processing Systems

We consider an agent's uncertainty about its environment and the problem of generalizing this uncertainty across states. Specifically, we focus on the problem of exploration in non-tabular reinforcement learning. Drawing inspiration from the intrinsic motivation literature, we use density models to measure uncertainty, and propose a novel algorithm for deriving a pseudo-count from an arbitrary density model. This technique enables us to generalize count-based exploration algorithms to the non-tabular case. We apply our ideas to Atari 2600 games, providing sensible pseudo-counts from raw pixels.


Estimating Aggregate Properties In Relational Networks With Unobserved Data

arXiv.org Machine Learning

Aggregate network properties such as cluster cohesion and the number of bridge nodes can be used to glean insights about a network's community structure, spread of influence and the resilience of the network to faults. Efficiently computing network properties when the network is fully observed has received significant attention (Wasserman and Faust 1994; Cook and Holder 2006), however the problem of computing aggregate network properties when there is missing data attributes has received little attention. Computing these properties for networks with missing attributes involves performing inference over the network. Statistical relational learning (SRL) and graph neural networks (GNNs) are two classes of machine learning approaches well suited for inferring missing attributes in a graph. In this paper, we study the effectiveness of these approaches in estimating aggregate properties on networks with missing attributes. We compare two SRL approaches and three GNNs. For these approaches we estimate these properties using point estimates such as MAP and mean. For SRL-based approaches that can infer a joint distribution over the missing attributes, we also estimate these properties as an expectation over the distribution. To compute the expectation tractably for probabilistic soft logic, one of the SRL approaches that we study, we introduce a novel sampling framework. In the experimental evaluation, using three benchmark datasets, we show that SRL-based approaches tend to outperform GNN-based approaches both in computing aggregate properties and predictive accuracy. Specifically, we show that estimating the aggregate properties as an expectation over the joint distribution outperforms point estimates.


OpenSpiel: A Framework for Reinforcement Learning in Games

arXiv.org Artificial Intelligence

OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games. OpenSpiel supports n-player (single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and sequential, strictly turn-taking and simultaneous-move, perfect and imperfect information games, as well as traditional multiagent environments such as (partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel also includes tools to analyze learning dynamics and other common evaluation metrics. This document serves both as an overview of the code base and an introduction to the terminology, core concepts, and algorithms across the fields of reinforcement learning, computational game theory, and search.


Actor-Critic Policy Optimization in Partially Observable Multiagent Environments

Neural Information Processing Systems

Optimization of parameterized policies for reinforcement learning (RL) is an important and challenging problem in artificial intelligence. Among the most common approaches are algorithms based on gradient ascent of a score function representing discounted return. In this paper, we examine the role of these policy gradient and actor-critic algorithms in partially-observable multiagent environments. We show several candidate policy update rules and relate them to a foundation of regret minimization and multiagent learning techniques for the one-shot and tabular cases, leading to previously unknown convergence guarantees. We apply our method to model-free multiagent reinforcement learning in adversarial sequential decision problems (zero-sum imperfect information games), using RL-style function approximation. We evaluate on commonly used benchmark Poker domains, showing performance against fixed policies and empirical convergence to approximate Nash equilibria in self-play with rates similar to or better than a baseline model-free algorithm for zero-sum games, without any domain-specific state space reductions.


Actor-Critic Policy Optimization in Partially Observable Multiagent Environments

arXiv.org Artificial Intelligence

Optimization of parameterized policies for reinforcement learning (RL) is an important and challenging problem in artificial intelligence. Among the most common approaches are algorithms based on gradient ascent of a score function representing discounted return. In this paper, we examine the role of these policy gradient and actor-critic algorithms in partially-observable multiagent environments. We show several candidate policy update rules and relate them to a foundation of regret minimization and multiagent learning techniques for the one-shot and tabular cases, leading to previously unknown convergence guarantees. We apply our method to model-free multiagent reinforcement learning in adversarial sequential decision problems (zero-sum imperfect information games), using RL-style function approximation. We evaluate on commonly used benchmark Poker domains, showing performance against fixed policies and empirical convergence to approximate Nash equilibria in self-play with rates similar to or better than a baseline model-free algorithm for zero-sum games, without any domain-specific state space reductions.


A Fairness-aware Hybrid Recommender System

arXiv.org Machine Learning

Recommender systems are used in variety of domains affecting people's lives. This has raised concerns about possible biases and discrimination that such systems might exacerbate. There are two primary kinds of biases inherent in recommender systems: observation bias and bias stemming from imbalanced data. Observation bias exists due to a feedback loop which causes the model to learn to only predict recommendations similar to previous ones. Imbalance in data occurs when systematic societal, historical, or other ambient bias is present in the data. In this paper, we address both biases by proposing a hybrid fairness-aware recommender system. Our model provides efficient and accurate recommendations by incorporating multiple user-user and item-item similarity measures, content, and demographic information, while addressing recommendation biases. We implement our model using a powerful and expressive probabilistic programming language called probabilistic soft logic. We experimentally evaluate our approach on a popular movie recommendation dataset, showing that our proposed model can provide more accurate and fairer recommendations, compared to a state-of-the art fair recommender system.


DS-MLR: Exploiting Double Separability for Scaling up Distributed Multinomial Logistic Regression

arXiv.org Machine Learning

Scaling multinomial logistic regression to datasets with very large number of data points and classes has not been trivial. This is primarily because one needs to compute the log-partition function on every data point. This makes distributing the computation hard. In this paper, we present a distributed stochastic gradient descent based optimization method (DS-MLR) for scaling up multinomial logistic regression problems to massive scale datasets without hitting any storage constraints on the data and model parameters. Our algorithm exploits double-separability, an attractive property we observe in the objective functions of several models in machine learning, that allows us to achieve both data as well as model parallelism simultaneously. In addition to being parallelizable, our algorithm can also easily be made non-blocking and asynchronous. We demonstrate the effectiveness of DS-MLR empirically on several real-world datasets, the largest being a reddit dataset created out of 1.7 billion user comments, where the data and parameter sizes are 228 GB and 358 GB respectively.


Neural Episodic Control

arXiv.org Machine Learning

Deep reinforcement learning methods attain super-human performance in a wide range of environments. Such methods are grossly inefficient, often taking orders of magnitudes more data than humans to achieve reasonable performance. We propose Neural Episodic Control: a deep reinforcement learning agent that is able to rapidly assimilate new experiences and act upon them. Our agent uses a semi-tabular representation of the value function: a buffer of past experience containing slowly changing state representations and rapidly updated estimates of the value function. We show across a wide range of environments that our agent learns significantly faster than other state-of-the-art, general purpose deep reinforcement learning agents.


Unifying Count-Based Exploration and Intrinsic Motivation

Neural Information Processing Systems

We consider an agent's uncertainty about its environment and the problem of generalizing this uncertainty across states. Specifically, we focus on the problem of exploration in non-tabular reinforcement learning. Drawing inspiration from the intrinsic motivation literature, we use density models to measure uncertainty, and propose a novel algorithm for deriving a pseudo-count from an arbitrary density model. This technique enables us to generalize count-based exploration algorithms to the non-tabular case. We apply our ideas to Atari 2600 games, providing sensible pseudo-counts from raw pixels. We transform these pseudo-counts into exploration bonuses and obtain significantly improved exploration in a number of hard games, including the infamously difficult Montezuma's Revenge.