Collaborating Authors

Singhal, Trisha

Analyzing Scientific Publications using Domain-Specific Word Embedding and Topic Modelling Artificial Intelligence

The scientific world is changing at a rapid pace, with new technology being developed and new trends being set at an increasing frequency. This paper presents a framework for conducting scientific analyses of academic publications, which is crucial to monitor research trends and identify potential innovations. This framework adopts and combines various techniques of Natural Language Processing, such as word embedding and topic modelling. Word embedding is used to capture semantic meanings of domain-specific words. We propose two novel scientific publication embedding, i.e., PUB-G and PUB-W, which are capable of learning semantic meanings of general as well as domain-specific words in various research fields. Thereafter, topic modelling is used to identify clusters of research topics within these larger research fields. We curated a publication dataset consisting of two conferences and two journals from 1995 to 2020 from two research domains. Experimental results show that our PUB-G and PUB-W embeddings are superior in comparison to other baseline embeddings by a margin of ~0.18-1.03 based on topic coherence.

Photozilla: A Large-Scale Photography Dataset and Visual Embedding for 20 Photography Styles Artificial Intelligence

The advent of social media platforms has been a catalyst for the development of digital photography that engendered a boom in vision applications. With this motivation, we introduce a large-scale dataset termed 'Photozilla', which includes over 990k images belonging to 10 different photographic styles. The dataset is then used to train 3 classification models to automatically classify the images into the relevant style which resulted in an accuracy of ~96%. With the rapid evolution of digital photography, we have seen new types of photography styles emerging at an exponential rate. On that account, we present a novel Siamese-based network that uses the trained classification models as the base architecture to adapt and classify unseen styles with only 25 training samples. We report an accuracy of over 68% for identifying 10 other distinct types of photography styles. This dataset can be found at