Shortliffe, Edward H.




Logic and Decision-Theoretic Methods for Planning under Uncertainty

AI Magazine

Decision theory and nonmonotonic logics are formalisms that can be employed to represent and solve problems of planning under uncertainty. We analyze the usefulness of these two approaches by establishing a simple correspondence between the two formalisms. The analysis indicates that planning using nonmonotonic logic comprises two decision-theoretic concepts: probabilities (degrees of belief in planning hypotheses) and utilities (degrees of preference for planning outcomes). We present and discuss examples of the following lessons from this decision-theoretic view of nonmonotonic reasoning: (1) decision theory and nonmonotonic logics are intended to solve different components of the planning problem; (2) when considered in the context of planning under uncertainty, nonmonotonic logics do not retain the domain-independent characteristics of classical (monotonic) logic; and (3) because certain nonmonotonic programming paradigms (for example, frame-based inheritance, nonmonotonic logics) are inherently problem specific, they might be inappropriate for use in solving certain types of planning problems.


A Computational Model of Reasoning from the Clinical Literature

AI Magazine

The specific motivations underlying this research include the following propositions: (1) Reasoning from experimental evidence contained in the clinical literature is central to the decisions physicians make in patient care. Furthermore, the model can help us better understand the general principles of reasoning from experimental evidence both in medicine and other domains. Roundsman is a developmental computer system that draws on structured representations of the clinical literature to critique plans for the management of primary breast cancer. Roundsman is able to produce patient-specific analyses of breast cancer-management options based on the 24 clinical studies currently encoded in its knowledge base.


An Approach to Verifying Completeness and Consistency in a Rule-Based Expert System

AI Magazine

We describe a program for verifying that a set of rules in an expert system comprehensively spans the knowledge of a specialized domain. The program has been devised and tested within the context of the ONCOCIN System, a rule-based consultant for clinical oncology. The stylized format of ONCOIN's rule has allowed the automatic detection of a number of common errors as the knowledge base has been developed. This capability suggests a general mechanism for correcting many problems with knowledge base completeness and consistency before they can cause performance errors.


Interviewer/Reasoner Model: An Approach to Improving System Responsiveness in Interactive AI Systems

AI Magazine

Interactive intelligent systems often suffer from a basic conflict between their computationally intensive nature and the need for responsiveness to a user. This paper introduces the Interviewer/Reasoner model, which helps to reduce this conflict. The Interviewer's primary function is to gather data while providing an acceptable response time to the user. The Reasoner does most of the symbolic computation for the system.