Collaborating Authors

Shen, Chunhua

Explainable Deep Few-shot Anomaly Detection with Deviation Networks Artificial Intelligence

Existing anomaly detection paradigms overwhelmingly focus on training detection models using exclusively normal data or unlabeled data (mostly normal samples). One notorious issue with these approaches is that they are weak in discriminating anomalies from normal samples due to the lack of the knowledge about the anomalies. Here, we study the problem of few-shot anomaly detection, in which we aim at using a few labeled anomaly examples to train sample-efficient discriminative detection models. To address this problem, we introduce a novel weakly-supervised anomaly detection framework to train detection models without assuming the examples illustrating all possible classes of anomaly. Specifically, the proposed approach learns discriminative normality (regularity) by leveraging the labeled anomalies and a prior probability to enforce expressive representations of normality and unbounded deviated representations of abnormality. This is achieved by an end-to-end optimization of anomaly scores with a neural deviation learning, in which the anomaly scores of normal samples are imposed to approximate scalar scores drawn from the prior while that of anomaly examples is enforced to have statistically significant deviations from these sampled scores in the upper tail. Furthermore, our model is optimized to learn fine-grained normality and abnormality by top-K multiple-instance-learning-based feature subspace deviation learning, allowing more generalized representations. Comprehensive experiments on nine real-world image anomaly detection benchmarks show that our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings. Our model can also offer explanation capability as a result of its prior-driven anomaly score learning. Code and datasets are available at:

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Artificial Intelligence

Very recently, a variety of vision transformer architectures for dense prediction tasks have been proposed and they show that the design of spatial attention is critical to their success in these tasks. In this work, we revisit the design of the spatial attention and demonstrate that a carefully-devised yet simple spatial attention mechanism performs favourably against the state-of-the-art schemes. As a result, we propose two vision transformer architectures, namely, Twins-PCPVT and Twins-SVT. Our proposed architectures are highly-efficient and easy to implement, only involving matrix multiplications that are highly optimized in modern deep learning frameworks. More importantly, the proposed architectures achieve excellent performance on a wide range of visual tasks including imagelevel classification as well as dense detection and segmentation. The simplicity and strong performance suggest that our proposed architectures may serve as stronger backbones for many vision tasks. Our code will be released soon at .

Conditional Positional Encodings for Vision Transformers Artificial Intelligence

We propose a conditional positional encoding (CPE) scheme for vision Transformers. Unlike previous fixed or learnable positional encodings, which are pre-defined and independent of input tokens, CPE is dynamically generated and conditioned on the local neighborhood of the input tokens. As a result, CPE can easily generalize to the input sequences that are longer than what the model has ever seen during training. Besides, CPE can keep the desired translation-invariance in the image classification task, resulting in improved classification accuracy. CPE can be effortlessly implemented with a simple Position Encoding Generator (PEG), and it can be seamlessly incorporated into the current Transformer framework. Built on PEG, we present Conditional Position encoding Vision Transformer (CPVT). We demonstrate that CPVT has visually similar attention maps compared to those with learned positional encodings. Benefit from the conditional positional encoding scheme, we obtain state-of-the-art results on the ImageNet classification task compared with vision Transformers to date. Our code will be made available at .

Deep Reinforcement Learning for Unknown Anomaly Detection Artificial Intelligence

We address a critical yet largely unsolved anomaly detection problem, in which we aim to learn detection models from a small set of partially labeled anomalies and a large-scale unlabeled dataset. This is a common scenario in many important applications. Existing related methods either proceed unsupervised with the unlabeled data, or exclusively fit the limited anomaly examples that often do not span the entire set of anomalies. We propose here instead a deep reinforcement-learning-based approach that actively seeks novel classes of anomaly that lie beyond the scope of the labeled training data. This approach learns to balance exploiting its existing data model against exploring for new classes of anomaly. It is thus able to exploit the labeled anomaly data to improve detection accuracy, without limiting the set of anomalies sought to those given anomaly examples. This is of significant practical benefit, as anomalies are inevitably unpredictable in form and often expensive to miss. Extensive experiments on 48 real-world datasets show that our approach significantly outperforms five state-of-the-art competing methods.

Improving Generative Adversarial Networks with Local Coordinate Coding Machine Learning

Generative adversarial networks (GANs) have shown remarkable success in generating realistic data from some predefined prior distribution (e.g., Gaussian noises). However, such prior distribution is often independent of real data and thus may lose semantic information (e.g., geometric structure or content in images) of data. In practice, the semantic information might be represented by some latent distribution learned from data. However, such latent distribution may incur difficulties in data sampling for GANs. In this paper, rather than sampling from the predefined prior distribution, we propose an LCCGAN model with local coordinate coding (LCC) to improve the performance of generating data. First, we propose an LCC sampling method in LCCGAN to sample meaningful points from the latent manifold. With the LCC sampling method, we can exploit the local information on the latent manifold and thus produce new data with promising quality. Second, we propose an improved version, namely LCCGAN++, by introducing a higher-order term in the generator approximation. This term is able to achieve better approximation and thus further improve the performance. More critically, we derive the generalization bound for both LCCGAN and LCCGAN++ and prove that a low-dimensional input is sufficient to achieve good generalization performance. Extensive experiments on four benchmark datasets demonstrate the superiority of the proposed method over existing GANs.

Deep Learning for Anomaly Detection: A Review Machine Learning

Anomaly detection has been an active research area for several decades, with early exploration dating back as far as to 1960s [52]. Due to the increasing demand and applications in broad domains, such as risk management, compliance, security, financial surveillance, health and medical risk, and AI safety, anomaly detection plays increasingly important roles, highlighted in various communities including data mining, machine learning, computer vision and statistics. In recent years, deep learning has shown tremendous capabilities in learning expressive representations of complex data such as high-dimensional data, temporal data, spatial data and graph data, pushing the boundaries of different learning tasks.

Deeply Learning the Messages in Message Passing Inference

Neural Information Processing Systems

Deep structured output learning shows great promise in tasks like semantic image segmentation. We proffer a new, efficient deep structured model learning scheme, in which we show how deep Convolutional Neural Networks (CNNs) can be used to directly estimate the messages in message passing inference for structured prediction with Conditional Random Fields CRFs). With such CNN message estimators, we obviate the need to learn or evaluate potential functions for message calculation. This confers significant efficiency for learning, since otherwise when performing structured learning for a CRF with CNN potentials it is necessary to undertake expensive inference for every stochastic gradient iteration. The network output dimension of message estimators is the same as the number of classes, rather than exponentially growing in the order of the potentials.

Multi-marginal Wasserstein GAN

Neural Information Processing Systems

Multiple marginal matching problem aims at learning mappings to match a source domain to multiple target domains and it has attracted great attention in many applications, such as multi-domain image translation. However, addressing this problem has two critical challenges: (i) Measuring the multi-marginal distance among different domains is very intractable; (ii) It is very difficult to exploit cross-domain correlations to match the target domain distributions. In this paper, we propose a novel Multi-marginal Wasserstein GAN (MWGAN) to minimize Wasserstein distance among domains. Specifically, with the help of multi-marginal optimal transport theory, we develop a new adversarial objective function with inner- and inter-domain constraints to exploit cross-domain correlations. Moreover, we theoretically analyze the generalization performance of MWGAN, and empirically evaluate it on the balanced and imbalanced translation tasks.

Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video

Neural Information Processing Systems

Recent work has shown that CNN-based depth and ego-motion estimators can be learned using unlabelled monocular videos. However, the performance is limited by unidentified moving objects that violate the underlying static scene assumption in geometric image reconstruction. More significantly, due to lack of proper constraints, networks output scale-inconsistent results over different samples, i.e., the ego-motion network cannot provide full camera trajectories over a long video sequence because of the per-frame scale ambiguity. This paper tackles these challenges by proposing a geometry consistency loss for scale-consistent predictions and an induced self-discovered mask for handling moving objects and occlusions. Since we do not leverage multi-task learning like recent works, our framework is much simpler and more efficient.

Positive Semidefinite Metric Learning with Boosting

Neural Information Processing Systems

The learning of appropriate distance metrics is a critical problem in classification. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. BoostMetric is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices.