Goto

Collaborating Authors

Shah, Pararth


Resource Constrained Dialog Policy Learning via Differentiable Inductive Logic Programming

arXiv.org Artificial Intelligence

Motivated by the needs of resource constrained dialog policy learning, we introduce dialog policy via differentiable inductive logic (DILOG). We explore the tasks of one-shot learning and zero-shot domain transfer with DILOG on SimDial and MultiWoZ. Using a single representative dialog from the restaurant domain, we train DILOG on the SimDial dataset and obtain 99 % in-domain test accuracy. We also show that the trained DILOG zero-shot transfers to all other domains with 99 % accuracy, proving the suitability of DILOG to slot-filling dialogs. We further extend our study to the MultiWoZ dataset achieving 90 % inform and success metrics. We also observe that these metrics are not capturing some of the shortcomings of DILOG in terms of false positives, prompting us to measure an auxiliary Action F1 score. We show that DILOG is 100x more data efficient than state-of-the-art neural approaches on MultiWoZ while achieving similar performance metrics. We conclude with a discussion on the strengths and weaknesses of DILOG.


Recommendation as a Communication Game: Self-Supervised Bot-Play for Goal-oriented Dialogue

arXiv.org Artificial Intelligence

Traditional recommendation systems produce static rather than interactive recommendations invariant to a user's specific requests, clarifications, or current mood, and can suffer from the cold-start problem if their tastes are unknown. These issues can be alleviated by treating recommendation as an interactive dialogue task instead, where an expert recommender can sequentially ask about someone's preferences, react to their requests, and recommend more appropriate items. In this work, we collect a goal-driven recommendation dialogue dataset (GoRecDial), which consists of 9,125 dialogue games and 81,260 conversation turns between pairs of human workers recommending movies to each other. The task is specifically designed as a cooperative game between two players working towards a quantifiable common goal. We leverage the dataset to develop an end-to-end dialogue system that can simultaneously converse and recommend. Models are first trained to imitate the behavior of human players without considering the task goal itself (supervised training). We then finetune our models on simulated bot-bot conversations between two paired pre-trained models (bot-play), in order to achieve the dialogue goal. Our experiments show that models finetuned with bot-play learn improved dialogue strategies, reach the dialogue goal more often when paired with a human, and are rated as more consistent by humans compared to models trained without bot-play. The dataset and code are publicly available through the ParlAI framework.


User Modeling for Task Oriented Dialogues

arXiv.org Artificial Intelligence

We introduce end-to-end neural network based models for simulating users of task-oriented dialogue systems. User simulation in dialogue systems is crucial from two different perspectives: (i) automatic evaluation of different dialogue models, and (ii) training task-oriented dialogue systems. We design a hierarchical sequence-to-sequence model that first encodes the initial user goal and system turns into fixed length representations using Recurrent Neural Networks (RNN). It then encodes the dialogue history using another RNN layer. At each turn, user responses are decoded from the hidden representations of the dialogue level RNN. This hierarchical user simulator (HUS) approach allows the model to capture undiscovered parts of the user goal without the need of an explicit dialogue state tracking. We further develop several variants by utilizing a latent variable model to inject random variations into user responses to promote diversity in simulated user responses and a novel goal regularization mechanism to penalize divergence of user responses from the initial user goal. We evaluate the proposed models on movie ticket booking domain by systematically interacting each user simulator with various dialogue system policies trained with different objectives and users.


FollowNet: Robot Navigation by Following Natural Language Directions with Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Abstract-- Understanding and following directions provided by humans can enable robots to navigate effectively in unknown situations. FollowNet processes instructions using an attention mechanism conditioned on its visual and depth input to focus on the relevant parts of the command while performing the navigation task. Deep reinforcement learning (RL) a sparse reward learns simultaneously the state representation, the attention function, and control policies. We evaluate our agent on a dataset of complex natural language directions that guide the agent through a rich and realistic dataset of simulated homes. We show that the FollowNet agent learns to execute previously unseen instructions described with a similar vocabulary, and successfully navigates along paths not encountered during training. The agent shows 30% improvement over a baseline model without the attention mechanism, with 52% success rate at novel instructions. Humans often navigate unknown environments by observing their surroundings and following directions. These directions consist predominantly of landmarks and directional instructions and other common words.