Shah, Mubarak


VideoCapsuleNet: A Simplified Network for Action Detection

Neural Information Processing Systems

The recent advances in Deep Convolutional Neural Networks (DCNNs) have shown extremely good results for video human action classification, however, action detection is still a challenging problem. The current action detection approaches follow a complex pipeline which involves multiple tasks such as tube proposals, optical flow, and tube classification. In this work, we present a more elegant solution for action detection based on the recently developed capsule network. We propose a 3D capsule network for videos, called VideoCapsuleNet: a unified network for action detection which can jointly perform pixel-wise action segmentation along with action classification. The proposed network is a generalization of capsule network from 2D to 3D, which takes a sequence of video frames as input. The 3D generalization drastically increases the number of capsules in the network, making capsule routing computationally expensive. We introduce capsule-pooling in the convolutional capsule layer to address this issue and make the voting algorithm tractable. The routing-by-agreement in the network inherently models the action representations and various action characteristics are captured by the predicted capsules. This inspired us to utilize the capsules for action localization and the class-specific capsules predicted by the network are used to determine a pixel-wise localization of actions. The localization is further improved by parameterized skip connections with the convolutional capsule layers and the network is trained end-to-end with a classification as well as localization loss. The proposed network achieves state-of-the-art performance on multiple action detection datasets including UCF-Sports, J-HMDB, and UCF-101 (24 classes) with an impressive ~20% improvement on UCF-101 and ~15% improvement on J-HMDB in terms of v-mAP scores.


VideoCapsuleNet: A Simplified Network for Action Detection

Neural Information Processing Systems

The recent advances in Deep Convolutional Neural Networks (DCNNs) have shown extremely good results for video human action classification, however, action detection is still a challenging problem. The current action detection approaches follow a complex pipeline which involves multiple tasks such as tube proposals, optical flow, and tube classification. In this work, we present a more elegant solution for action detection based on the recently developed capsule network. We propose a 3D capsule network for videos, called VideoCapsuleNet: a unified network for action detection which can jointly perform pixel-wise action segmentation along with action classification. The proposed network is a generalization of capsule network from 2D to 3D, which takes a sequence of video frames as input. The 3D generalization drastically increases the number of capsules in the network, making capsule routing computationally expensive. We introduce capsule-pooling in the convolutional capsule layer to address this issue and make the voting algorithm tractable. The routing-by-agreement in the network inherently models the action representations and various action characteristics are captured by the predicted capsules. This inspired us to utilize the capsules for action localization and the class-specific capsules predicted by the network are used to determine a pixel-wise localization of actions. The localization is further improved by parameterized skip connections with the convolutional capsule layers and the network is trained end-to-end with a classification as well as localization loss. The proposed network achieves state-of-the-art performance on multiple action detection datasets including UCF-Sports, J-HMDB, and UCF-101 (24 classes) with an impressive ~20% improvement on UCF-101 and ~15% improvement on J-HMDB in terms of v-mAP scores.


Unsupervised Meta-Learning For Few-Shot Image and Video Classification

arXiv.org Artificial Intelligence

Few-shot or one-shot learning of classifiers for images or videos is an important next frontier in computer vision. The extreme paucity of training data means that the learning must start with a significant inductive bias towards the type of task to be learned. One way to acquire this is by meta-learning on tasks similar to the target task. However, if the meta-learning phase requires labeled data for a large number of tasks closely related to the target task, it not only increases the difficulty and cost, but also conceptually limits the approach to variations of well-understood domains. In this paper, we propose UMTRA, an algorithm that performs meta-learning on an unlabeled dataset in an unsupervised fashion, without putting any constraint on the classifier network architecture. The only requirements towards the dataset are: sufficient size, diversity and number of classes, and relevance of the domain to the one in the target task. Exploiting this information, UMTRA generates synthetic training tasks for the meta-learning phase. We evaluate UMTRA on few-shot and one-shot learning on both image and video domains. To the best of our knowledge, we are the first to evaluate meta-learning approaches on UCF-101. On the Omniglot and Mini-Imagenet few-shot learning benchmarks, UMTRA outperforms every tested approach based on unsupervised learning of representations, while alternating for the best performance with the recent CACTUs algorithm. Compared to supervised model-agnostic meta-learning approaches, UMTRA trades off some classification accuracy for a vast decrease in the number of labeled data needed. For instance, on the five-way one-shot classification on the Omniglot, we retain 85% of the accuracy of MAML, a recently proposed supervised meta-learning algorithm, while reducing the number of required labels from 24005 to 5.


Pay attention! - Robustifying a Deep Visuomotor Policy through Task-Focused Attention

arXiv.org Artificial Intelligence

Several recent projects demonstrated the promise of end-to-end learned deep visuomotor policies for robot manipulator control. Despite impressive progress, these systems are known to be vulnerable to physical disturbances, such as accidental or adversarial bumps that make them drop the manipulated object. They also tend to be distracted by visual disturbances such as objects moving in the robot's field of view, even if the disturbance does not physically prevent the execution of the task. In this paper we propose a technique for augmenting a deep visuomotor policy trained through demonstrations with task-focused attention. The manipulation task is specified with a natural language text such as "move the red bowl to the left". This allows the attention component to concentrate on the current object that the robot needs to manipulate. We show that even in benign environments, the task focused attention allows the policy to consistently outperform a variant with no attention mechanism. More importantly, the new policy is significantly more robust: it regularly recovers from severe physical disturbances (such as bumps causing it to drop the object) from which the unmodified policy almost never recovers. In addition, we show that the proposed policy performs correctly in the presence of a wide class of visual disturbances, exhibiting a behavior reminiscent of human selective attention experiments.


Training Faster by Separating Modes of Variation in Batch-normalized Models

arXiv.org Machine Learning

Batch Normalization (BN) is essential to effectively train state-of-the-art deep Convolutional Neural Networks (CNN). It normalizes inputs to the layers during training using the statistics of each mini-batch. In this work, we study BN from the viewpoint of Fisher kernels. We show that assuming samples within a mini-batch are from the same probability density function, then BN is identical to the Fisher vector of a Gaussian distribution. That means BN can be explained in terms of kernels that naturally emerge from the probability density function of the underlying data distribution. However, given the rectifying non-linearities employed in CNN architectures, distribution of inputs to the layers show heavy tail and asymmetric characteristics. Therefore, we propose approximating underlying data distribution not with one, but a mixture of Gaussian densities. Deriving Fisher vector for a Gaussian Mixture Model (GMM), reveals that BN can be improved by independently normalizing with respect to the statistics of disentangled sub-populations. We refer to our proposed soft piecewise version of BN as Mixture Normalization (MN). Through extensive set of experiments on CIFAR-10 and CIFAR-100, we show that MN not only effectively accelerates training image classification and Generative Adversarial networks, but also reaches higher quality models.


Task-Agnostic Meta-Learning for Few-shot Learning

arXiv.org Machine Learning

Meta-learning approaches have been proposed to tackle the few-shot learning problem.Typically, a meta-learner is trained on a variety of tasks in the hopes of being generalizable to new tasks. However, the generalizability on new tasks of a meta-learner could be fragile when it is over-trained on existing tasks during meta-training phase. In other words, the initial model of a meta-learner could be too biased towards existing tasks to adapt to new tasks, especially when only very few examples are available to update the model. To avoid a biased meta-learner and improve its generalizability, we propose a novel paradigm of Task-Agnostic Meta-Learning (TAML) algorithms. Specifically, we present an entropy-based approach that meta-learns an unbiased initial model with the largest uncertainty over the output labels by preventing it from over-performing in classification tasks. Alternatively, a more general inequality-minimization TAML is presented for more ubiquitous scenarios by directly minimizing the inequality of initial losses beyond the classification tasks wherever a suitable loss can be defined.Experiments on benchmarked datasets demonstrate that the proposed approaches outperform compared meta-learning algorithms in both few-shot classification and reinforcement learning tasks.