Goto

Collaborating Authors

Schumann, Andrew


Neutrality and Many-Valued Logics

arXiv.org Artificial Intelligence

In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Goedel's, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. On the base of non-Archimedean valued logics, we construct non-Archimedean valued interval neutrosophic logic INL by which we can describe neutrality phenomena.