Russell, Stuart


The Off-Switch Game

arXiv.org Artificial Intelligence

It is clear that one of the primary tools we can use to mitigate the potential risk from a misbehaving AI system is the ability to turn the system off. As the capabilities of AI systems improve, it is important to ensure that such systems do not adopt subgoals that prevent a human from switching them off. This is a challenge because many formulations of rational agents create strong incentives for self-preservation. This is not caused by a built-in instinct, but because a rational agent will maximize expected utility and cannot achieve whatever objective it has been given if it is dead. Our goal is to study the incentives an agent has to allow itself to be switched off. We analyze a simple game between a human H and a robot R, where H can press R's off switch but R can disable the off switch. A traditional agent takes its reward function for granted: we show that such agents have an incentive to disable the off switch, except in the special case where H is perfectly rational. Our key insight is that for R to want to preserve its off switch, it needs to be uncertain about the utility associated with the outcome, and to treat H's actions as important observations about that utility. (R also has no incentive to switch itself off in this setting.) We conclude that giving machines an appropriate level of uncertainty about their objectives leads to safer designs, and we argue that this setting is a useful generalization of the classical AI paradigm of rational agents.


A Nearly-Black-Box Online Algorithm for Joint Parameter and State Estimation in Temporal Models

AAAI Conferences

Online joint parameter and state estimation is a core problem for temporal models.Most existing methods are either restricted to a particular class of models (e.g., the Storvik filter) or computationally expensive (e.g., particle MCMC). We propose a novel nearly-black-box algorithm, the Assumed Parameter Filter (APF), a hybrid of particle filtering for state variables and assumed density filtering for parameter variables.It has the following advantages:(a) it is online and computationally efficient;(b) it is applicable to both discrete and continuous parameter spaces with arbitrary transition dynamics.On a variety of toy and real models, APF generates more accurate results within a fixed computation budget compared to several standard algorithms from the literature.


The Off-Switch Game

AAAI Conferences

It is clear that one of the primary tools we can use to mitigate thepotential risk from a misbehaving AI system is the ability to turn thes ystem off. As the capabilities of AI systems improve, it is important to ensure that such systems do not adopt subgoals that prevent a human from switching them off. This is a challenge because many formulations of rational agents create strong incentives for self-preservation. This is not caused by a built-in instinct, but because a rational agent will maximize expected utility and cannot achieve whatever objective it has been given if it is dead.  Our goal is to study the incentives an agent has to allow itself to be switched off. We analyze a simple game between a human H and a robot R, where H can press R's off switch but R can disable the off switch. A traditional agent takes its reward function for granted: we show that such agents have an incentive to disable the off switch, except in the special case where H is perfectly rational. Our key insight is that for R to want to preserve its off switch, it needs to be uncertain about the utility associated with the outcome, and to treat H's actions as important observations about that utility. (R also has no incentive to switch itself off in this setting.) We conclude that giving machines an appropriate level of uncertainty about their objectives leads to safer designs, and we argue that this setting is a useful generalization of the classical AI paradigm of rational agents.


Metaphysics of Planning Domain Descriptions

AAAI Conferences

STRIPS-like languages (SLLs) have fostered immense advances in automated planning. In practice, SLLs are used to express highly abstract versions of real-world planning problems, leading to more concise models and faster solution times. Unfortunately, as we show in the paper, simple ways of abstracting solvable real-world problems may lead to SLL models that are unsolvable, SLL models whose solutions are incorrect with respect to the real-world problem, or models that are inexpressible in SLLs. There is some evidence that such limitations have restricted the applicability of AI planning technology in the real world, as is apparent in the case of task and motion planning in robotics. We show that the situation can be ameliorated by a combination of increased expressive power — for example, allowing angelic nondeterminism in action effects — and new kinds of algorithmic approaches designed to produce correct solutions from initially incorrect or non-Markovian abstract models.


Research Priorities for Robust and Beneficial Artificial Intelligence

AI Magazine

Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to investigate how to maximize these benefits while avoiding potential pitfalls.


Letter to the Editor: Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter

AI Magazine

The adoption of probabilistic and decision-theoretic representations and statistical learning methods has led to a large degree of integration and cross-fertilization among AI, machine learning, statistics, control theory, neuroscience, and other fields. The progress in AI research makes it timely to focus research not only on making AI more capable, but also on maximizing the societal benefit of AI. We recommend expanded research aimed at ensuring that increasingly capable AI systems are robust and beneficial: our AI systems must do what we want them to do. In summary, we believe that research on how to make AI systems robust and beneficial is both important and timely, and that there are concrete research directions that can be pursued today.


Research Priorities for Robust and Beneficial Artificial Intelligence

AI Magazine

Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to investigate how to maximize these benefits while avoiding potential pitfalls. This article gives numerous examples (which should by no means be construed as an exhaustive list) of such worthwhile research aimed at ensuring that AI remains robust and beneficial.


Letter to the Editor: Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter

AI Magazine

Artificial intelligence (AI) research has explored a variety of problems and approaches since its inception, but for the last 20 years or so has been focused on the problems surrounding the construction of intelligent agents — systems that perceive and act in some environment. In this context, "intelligence" is related to statistical and economic notions of rationality — colloquially, the ability to make good decisions, plans, or inferences. The adoption of probabilistic and decision-theoretic representations and statistical learning methods has led to a large degree of integration and cross-fertilization among AI, machine learning, statistics, control theory, neuroscience, and other fields. The establishment of shared theoretical frameworks, combined with the availability of data and processing power, has yielded remarkable successes in various component tasks such as speech recognition, image classification, autonomous vehicles, machine translation, legged locomotion, and question-answering systems. As capabilities in these areas and others cross the threshold from laboratory research to economically valuable technologies, a virtuous cycle takes hold whereby even small improvements in performance are worth large sums of money, prompting greater investments in research. There is now a broad consensus that AI research is progressing steadily, and that its impact on society is likely to increase. The potential benefits are huge, since everything that civilization has to offer is a product of human intelligence; we cannot predict what we might achieve when this intelligence is magnified by the tools AI may provide, but the eradication of disease and poverty are not unfathomable. Because of the great potential of AI, it is important to research how to reap its benefits while avoiding potential pitfalls. The progress in AI research makes it timely to focus research not only on making AI more capable, but also on maximizing the societal benefit of AI. Such considerations motivated the AAAI 2008–09 Presidential Panel on Long-Term AI Futures and other projects on AI impacts, and constitute a significant expansion of the field of AI itself, which up to now has focused largely on techniques that are neutral with respect to purpose. We recommend expanded research aimed at ensuring that increasingly capable AI systems are robust and beneficial: our AI systems must do what we want them to do. The attached research priorities document [see page X] gives many examples of such research directions that can help maximize the societal benefit of AI. This research is by necessity interdisciplinary, because it involves both society and AI. It ranges from economics, law and philosophy to computer security, formal methods and, of course, various branches of AI itself. In summary, we believe that research on how to make AI systems robust and beneficial is both important and timely, and that there are concrete research directions that can be pursued today.


Probabilistic Model-Based Approach for Heart Beat Detection

arXiv.org Artificial Intelligence

Nowadays, hospitals are ubiquitous and integral to modern society. Patients flow in and out of a veritable whirlwind of paperwork, consultations, and potential inpatient admissions, through an abstracted system that is not without flaws. One of the biggest flaws in the medical system is perhaps an unexpected one: the patient alarm system. One longitudinal study reported an 88.8% rate of false alarms, with other studies reporting numbers of similar magnitudes. These false alarm rates lead to a number of deleterious effects that manifest in a significantly lower standard of care across clinics. This paper discusses a model-based probabilistic inference approach to identifying variables at a detection level. We design a generative model that complies with an overview of human physiology and perform approximate Bayesian inference. One primary goal of this paper is to justify a Bayesian modeling approach to increasing robustness in a physiological domain. We use three data sets provided by Physionet, a research resource for complex physiological signals, in the form of the Physionet 2014 Challenge set-p1 and set-p2, as well as the MGH/MF Waveform Database. On the extended data set our algorithm is on par with the other top six submissions to the Physionet 2014 challenge.


Metaphysics of Planning Domain Descriptions

AAAI Conferences

Domain models for sequential decision making typically represent abstract versions of real-world systems. In practice, such representations are compact, easy to maintain, and affort faster solution times. Unfortunately, as we show in this paper, simple ways of abstracting solvable real-world problems may lead to models whose solutions are incorrect with respect to the real-world problem. There is some evidence that such limitations have restricted the applicability of SDM technology in the real world, as is apparent in the case of task and motion planning in robotics. We show that the situation can be ameliorated by a combination of increased expressive power---for example, allowing angelic nondeterminism in action effects---and new kinds of algorithmic approaches designed to produce correct solutions from initially incorrect or non-Markovian abstract models.