Rosenbloom, P. S.


A preliminary analysis of the Soar architecture as a basis for general intelligence

Classics

"In this article we take a step towards providing an analysis of the Soar architecture as a basis for general intelligence. Included are discussions of the basic assumptions underlying the development of Soar, a description of Soar cast in terms of the theoretical idea of multiple levels of description, an example of Soar performing multi-column subtraction, and three analyses of Soar: its natural tasks, the sources of its power, and its scope and limits"Artificial Intelligence, 47, 289-325.


The problem of expensive chunks and its solution by restricting expressiveness.

Classics

"Chunking, a simple experience-based learning mechanism, is Soar's only learning mechanism. Chunking creates new items of information, called chunks, based on the results of problem-solving and stores them in the knowledge base. These chunks are accessed and used in appropriate later situations to avoid the problem-solving required to determine them. It is already well-established that chunking improves performance in Soar when viewed in terms of the subproblems required and the number of steps within a subproblem. However, despite the reduction in number of steps, sometimes there may be a severe degradation in the total run time. This problem arises due to expensive chunks, i.e., chunks that require a large amount of effort in accessing them from the knowledge base. They pose a major problem for Soar, since in their presence, no guarantees can be given about Soar's performance.In this article, we establish that expensive chunks exist and analyze their causes. We use this analysis to propose a solution for expensive chunks. The solution is based on the notion of restricting the expressiveness of the representational language to guarantee that the chunks formed will require only a limited amount of accessing effort. We analyze the tradeoffs involved in restricting expressiveness and present some empirical evidence to support our analysis."Machine Learning, 5, 299-348.


The problem of expensive chunks and its solution by restricting expressiveness.

Classics

"Chunking, a simple experience-based learning mechanism, is Soar's only learning mechanism. Chunking creates new items of information, called chunks, based on the results of problem-solving and stores them in the knowledge base. These chunks are accessed and used in appropriate later situations to avoid the problem-solving required to determine them. It is already well-established that chunking improves performance in Soar when viewed in terms of the subproblems required and the number of steps within a subproblem. However, despite the reduction in number of steps, sometimes there may be a severe degradation in the total run time. This problem arises due to expensive chunks, i.e., chunks that require a large amount of effort in accessing them from the knowledge base. They pose a major problem for Soar, since in their presence, no guarantees can be given about Soar's performance.In this article, we establish that expensive chunks exist and analyze their causes. We use this analysis to propose a solution for expensive chunks. The solution is based on the notion of restricting the expressiveness of the representational language to guarantee that the chunks formed will require only a limited amount of accessing effort. We analyze the tradeoffs involved in restricting expressiveness and present some empirical evidence to support our analysis."Machine Learning, 5, 299-348.


SOAR: An architecture for general intelligence

Classics

"The ultimate goal of work in cognitive architecture is to provide the foundation for a system capable of general intelligent behavior. That is, the goal is to provide the underlying structure that would enable a system to perform the full range of cognitive tasks, employ the full range of problem solving methods and representations appropriate for the tasks, and learn about all aspects of the tasks and its performance on them. In this article we present SOAR, an implemented proposal for such an architecture. We describe its organizational principles, the system as currently implemented, and demonstrations of its capabilities." Artificial Intelligence, 33(1):1-64.




R1-Soar: An experiment in knowledge-intensive programming in a problem-solving architecture.

Classics

"This paper presents an experiment in knowledge-intensive programming within a general problem-solving production-system architecture called Soar. In Soar, knowledge is encoded within a set of problem spaces, which yields a system capable of reasoning from first principles. Expertise consists of additional rules that guide complex problem-space searches and substitute for expensive problem-space operators. The resulting system uses both knowledge and search when relevant. Expertise knowledge is acquired either by having it programmed, or by a chunking mechanism that automatically learns new rules reflecting the results implicit in the knowledge of the problem spaces. The approach is demonstrated on the computer-system configuration task, the task performed by the expert system R1."IEEE Transactions on Pattern Analysis and Machine Intelligence, 7, 561-569.


R1-Soar: An experiment in knowledge-intensive programming in a problem-solving architecture.

Classics

"This paper presents an experiment in knowledge-intensive programming within a general problem-solving production-system architecture called Soar. In Soar, knowledge is encoded within a set of problem spaces, which yields a system capable of reasoning from first principles. Expertise consists of additional rules that guide complex problem-space searches and substitute for expensive problem-space operators. The resulting system uses both knowledge and search when relevant. Expertise knowledge is acquired either by having it programmed, or by a chunking mechanism that automatically learns new rules reflecting the results implicit in the knowledge of the problem spaces. The approach is demonstrated on the computer-system configuration task, the task performed by the expert system R1."IEEE Transactions on Pattern Analysis and Machine Intelligence, 7, 561-569.


A world-championship-level Othello program

Classics

Available for a fee.Manuscript available at Carnegie Mellon University.Othello is a recent addition to the collection of games that have been examined within artificial intelligence. Advances have been rapid, yielding programs that have reached the level of world-championship play. This article describes the current champion Othello program, Iago. The work described here includes: (1) a task analysis of Othello; (2) the implemenation of a program based on this analysis and state-of-the-art AI gameplaying techniques; and (3) an evaluation of the program's performance through games played against other programs and comparisons with expert human play.Artificial Intelligence, 19, 279- 320