Goto

Collaborating Authors

Qi, Xiaojuan


ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D Object Detection

arXiv.org Artificial Intelligence

In this paper, we present a self-training method, named ST3D++, with a holistic pseudo label denoising pipeline for unsupervised domain adaptation on 3D object detection. ST3D++ aims at reducing noise in pseudo label generation as well as alleviating the negative impacts of noisy pseudo labels on model training. First, ST3D++ pre-trains the 3D object detector on the labeled source domain with random object scaling (ROS) which is designed to reduce target domain pseudo label noise arising from object scale bias of the source domain. Then, the detector is progressively improved through alternating between generating pseudo labels and training the object detector with pseudo-labeled target domain data. Here, we equip the pseudo label generation process with a hybrid quality-aware triplet memory to improve the quality and stability of generated pseudo labels. Meanwhile, in the model training stage, we propose a source data assisted training strategy and a curriculum data augmentation policy to effectively rectify noisy gradient directions and avoid model over-fitting to noisy pseudo labeled data. These specific designs enable the detector to be trained on meticulously refined pseudo labeled target data with denoised training signals, and thus effectively facilitate adapting an object detector to a target domain without requiring annotations. Finally, our method is assessed on four 3D benchmark datasets (i.e., Waymo, KITTI, Lyft, and nuScenes) for three common categories (i.e., car, pedestrian and bicycle). ST3D++ achieves state-of-the-art performance on all evaluated settings, outperforming the corresponding baseline by a large margin (e.g., 9.6% $\sim$ 38.16% on Waymo $\rightarrow$ KITTI in terms of AP$_{\text{3D}}$), and even surpasses the fully supervised oracle results on the KITTI 3D object detection benchmark with target prior. Code will be available.


Controllable Text-to-Image Generation

Neural Information Processing Systems

In this paper, we propose a novel controllable text-to-image generative adversarial network (ControlGAN), which can effectively synthesise high-quality images and also control parts of the image generation according to natural language descriptions. To achieve this, we introduce a word-level spatial and channel-wise attention-driven generator that can disentangle different visual attributes, and allow the model to focus on generating and manipulating subregions corresponding to the most relevant words. Also, a word-level discriminator is proposed to provide fine-grained supervisory feedback by correlating words with image regions, facilitating training an effective generator which is able to manipulate specific visual attributes without affecting the generation of other content. Furthermore, perceptual loss is adopted to reduce the randomness involved in the image generation, and to encourage the generator to manipulate specific attributes required in the modified text. Extensive experiments on benchmark datasets demonstrate that our method outperforms existing state of the art, and is able to effectively manipulate synthetic images using natural language descriptions.


Image Inpainting via Generative Multi-column Convolutional Neural Networks

Neural Information Processing Systems

In this paper, we propose a generative multi-column network for image inpainting. To better characterize global structures, we design a confidence-driven reconstruction loss while an implicit diversified MRF regularization is adopted to enhance local details. The multi-column network combined with the reconstruction and MRF loss propagates local and global information derived from context to the target inpainting regions. Extensive experiments on challenging street view, face, natural objects and scenes manifest that our method produces visual compelling results even without previously common post-processing. Papers published at the Neural Information Processing Systems Conference.


Image Inpainting via Generative Multi-column Convolutional Neural Networks

Neural Information Processing Systems

In this paper, we propose a generative multi-column network for image inpainting. This network synthesizes different image components in a parallel manner within one stage. To better characterize global structures, we design a confidence-driven reconstruction loss while an implicit diversified MRF regularization is adopted to enhance local details. The multi-column network combined with the reconstruction and MRF loss propagates local and global information derived from context to the target inpainting regions. Extensive experiments on challenging street view, face, natural objects and scenes manifest that our method produces visual compelling results even without previously common post-processing.


Image Inpainting via Generative Multi-column Convolutional Neural Networks

Neural Information Processing Systems

In this paper, we propose a generative multi-column network for image inpainting. This network synthesizes different image components in a parallel manner within one stage. To better characterize global structures, we design a confidence-driven reconstruction loss while an implicit diversified MRF regularization is adopted to enhance local details. The multi-column network combined with the reconstruction and MRF loss propagates local and global information derived from context to the target inpainting regions. Extensive experiments on challenging street view, face, natural objects and scenes manifest that our method produces visual compelling results even without previously common post-processing.


Semi-parametric Image Synthesis

arXiv.org Artificial Intelligence

We present a semi-parametric approach to photographic image synthesis from semantic layouts. The approach combines the complementary strengths of parametric and nonparametric techniques. The nonparametric component is a memory bank of image segments constructed from a training set of images. Given a novel semantic layout at test time, the memory bank is used to retrieve photographic references that are provided as source material to a deep network. The synthesis is performed by a deep network that draws on the provided photographic material. Experiments on multiple semantic segmentation datasets show that the presented approach yields considerably more realistic images than recent purely parametric techniques. The results are shown in the supplementary video at https://youtu.be/U4Q98lenGLQ