Goto

Collaborating Authors

Paul, Shachi


Towards Universal Dialogue Act Tagging for Task-Oriented Dialogues

arXiv.org Artificial Intelligence

Machine learning approaches for building task-oriented dialogue systems require large conversational datasets with labels to train on. We are interested in building task-oriented dialogue systems from human-human conversations, which may be available in ample amounts in existing customer care center logs or can be collected from crowd workers. Annotating these datasets can be prohibitively expensive. Recently multiple annotated task-oriented human-machine dialogue datasets have been released, however their annotation schema varies across different collections, even for well-defined categories such as dialogue acts (DAs). We propose a Universal DA schema for task-oriented dialogues and align existing annotated datasets with our schema. Our aim is to train a Universal DA tagger (U-DAT) for task-oriented dialogues and use it for tagging human-human conversations. We investigate multiple datasets, propose manual and automated approaches for aligning the different schema, and present results on a target corpus of human-human dialogues. In unsupervised learning experiments we achieve an F1 score of 54.1% on system turns in human-human dialogues. In a semi-supervised setup, the F1 score increases to 57.7% which would otherwise require at least 1.7K manually annotated turns. For new domains, we show further improvements when unlabeled or labeled target domain data is available.


MultiWOZ 2.1: Multi-Domain Dialogue State Corrections and State Tracking Baselines

arXiv.org Artificial Intelligence

MultiWOZ is a recently-released multidomain dialogue dataset spanning 7 distinct domains and containing over 10000 dialogues, one of the largest resources of its kind to-date. Though an immensely useful resource, while building different classes of dialogue state tracking models using MultiWOZ, we detected substantial errors in the state annotations and dialogue utterances which negatively impacted the performance of our models. In order to alleviate this problem, we use crowdsourced workers to fix the state annotations and utterances in the original version of the data. Our correction process results in changes to over 32% of state annotations across 40% of the dialogue turns. In addition, we fix 146 dialogue utterances throughout the dataset focusing in particular on addressing slot value errors represented within the conversations. We then benchmark a number of state-of-the-art dialogue state tracking models on this new MultiWOZ 2.1 dataset and show joint state tracking performance on the corrected state annotations. We are publicly releasing MultiWOZ 2.1 to the community, hoping that this dataset resource will allow for more effective dialogue state tracking models to be built in the future.


HyST: A Hybrid Approach for Flexible and Accurate Dialogue State Tracking

arXiv.org Artificial Intelligence

Recent works on end-to-end trainable neural network based approaches have demonstrated state-of-the-art results on dialogue state tracking. The best performing approaches estimate a probability distribution over all possible slot values. However, these approaches do not scale for large value sets commonly present in real-life applications and are not ideal for tracking slot values that were not observed in the training set. To tackle these issues, candidate-generation-based approaches have been proposed. These approaches estimate a set of values that are possible at each turn based on the conversation history and/or language understanding outputs, and hence enable state tracking over unseen values and large value sets however, they fall short in terms of performance in comparison to the first group. In this work, we analyze the performance of these two alternative dialogue state tracking methods, and present a hybrid approach (HyST) which learns the appropriate method for each slot type. To demonstrate the effectiveness of HyST on a rich-set of slot types, we experiment with the recently released MultiWOZ-2.0 multi-domain, task-oriented dialogue-dataset. Our experiments show that HyST scales to multi-domain applications. Our best performing model results in a relative improvement of 24% and 10% over the previous SOTA and our best baseline respectively.


Flexible and Scalable State Tracking Framework for Goal-Oriented Dialogue Systems

arXiv.org Artificial Intelligence

Goal-oriented dialogue systems typically rely on components specifically developed for a single task or domain. This limits such systems in two different ways: If there is an update in the task domain, the dialogue system usually needs to be updated or completely re-trained. It is also harder to extend such dialogue systems to different and multiple domains. The dialogue state tracker in conventional dialogue systems is one such component - it is usually designed to fit a well-defined application domain. For example, it is common for a state variable to be a categorical distribution over a manually-predefined set of entities (Henderson et al., 2013), resulting in an inflexible and hard-to-extend dialogue system. In this paper, we propose a new approach for dialogue state tracking that can generalize well over multiple domains without incorporating any domain-specific knowledge. Under this framework, discrete dialogue state variables are learned independently and the information of a predefined set of possible values for dialogue state variables is not required. Furthermore, it enables adding arbitrary dialogue context as features and allows for multiple values to be associated with a single state variable. These characteristics make it much easier to expand the dialogue state space. We evaluate our framework using the widely used dialogue state tracking challenge data set (DSTC2) and show that our framework yields competitive results with other state-of-the-art results despite incorporating little domain knowledge. We also show that this framework can benefit from widely available external resources such as pre-trained word embeddings.