Nimishakavi, Madhav


HyperGCN: A New Method For Training Graph Convolutional Networks on Hypergraphs

Neural Information Processing Systems

In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems.


A Dual Framework for Low-rank Tensor Completion

Neural Information Processing Systems

One of the popular approaches for low-rank tensor completion is to use the latent trace norm regularization. However, most existing works in this direction learn a sparse combination of tensors. In this work, we fill this gap by proposing a variant of the latent trace norm that helps in learning a non-sparse combination of tensors. We develop a dual framework for solving the low-rank tensor completion problem. Overall, the optimal solution is shown to lie on a Cartesian product of Riemannian manifolds.


A Dual Framework for Low-rank Tensor Completion

Neural Information Processing Systems

One of the popular approaches for low-rank tensor completion is to use the latent trace norm regularization. However, most existing works in this direction learn a sparse combination of tensors. In this work, we fill this gap by proposing a variant of the latent trace norm that helps in learning a non-sparse combination of tensors. We develop a dual framework for solving the low-rank tensor completion problem. We first show a novel characterization of the dual solution space with an interesting factorization of the optimal solution. Overall, the optimal solution is shown to lie on a Cartesian product of Riemannian manifolds. Furthermore, we exploit the versatile Riemannian optimization framework for proposing computationally efficient trust region algorithm. The experiments illustrate the efficacy of the proposed algorithm on several real-world datasets across applications.


A Dual Framework for Low-rank Tensor Completion

Neural Information Processing Systems

One of the popular approaches for low-rank tensor completion is to use the latent trace norm regularization. However, most existing works in this direction learn a sparse combination of tensors. In this work, we fill this gap by proposing a variant of the latent trace norm that helps in learning a non-sparse combination of tensors. We develop a dual framework for solving the low-rank tensor completion problem. We first show a novel characterization of the dual solution space with an interesting factorization of the optimal solution. Overall, the optimal solution is shown to lie on a Cartesian product of Riemannian manifolds. Furthermore, we exploit the versatile Riemannian optimization framework for proposing computationally efficient trust region algorithm. The experiments illustrate the efficacy of the proposed algorithm on several real-world datasets across applications.


HyperGCN: Hypergraph Convolutional Networks for Semi-Supervised Classification

arXiv.org Machine Learning

Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.


Lovasz Convolutional Networks

arXiv.org Machine Learning

Semi-supervised learning on graph structured data has received significant attention with the recent introduction of graph convolution networks (GCN). While traditional methods have focused on optimizing a loss augmented with Laplacian regularization framework, GCNs perform an implicit Laplacian type regularization to capture local graph structure. In this work, we propose Lovasz convolutional network (LCNs) which are capable of incorporating global graph properties. LCNs achieve this by utilizing Lovasz's orthonormal embeddings of the nodes. We analyse local and global properties of graphs and demonstrate settings where LCNs tend to work better than GCNs. We validate the proposed method on standard random graph models such as stochastic block models (SBM) and certain community structure based graphs where LCNs outperform GCNs and learn more intuitive embeddings. We also perform extensive binary and multi-class classification experiments on real world datasets to demonstrate LCN's effectiveness. In addition to simple graphs, we also demonstrate the use of LCNs on hypergraphs by identifying settings where they are expected to work better than GCNs.


A dual framework for trace norm regularized low-rank tensor completion

arXiv.org Machine Learning

One of the popular approaches for low-rank tensor completion is to use the latent trace norm as a low-rank regularizer. However, most of the existing works learn a sparse combination of tensors. In this work, we fill this gap by proposing a variant of the latent trace norm which helps to learn a non-sparse combination of tensors. We develop a dual framework for solving the problem of latent trace norm regularized low-rank tensor completion. In this framework, we first show a novel characterization of the solution space with a novel factorization, and then, propose two scalable optimization formulations. The problems are shown to lie on a Cartesian product of Riemannian spectrahedron manifolds. We exploit the versatile Riemannian optimization framework for proposing computationally efficient trust-region algorithms. The experiments show the good performance of the proposed algorithms on several real-world data sets in different applications.