Goto

Collaborating Authors

Mueen, Abdullah


Experimental Comparison of Online Anomaly Detection Algorithms

AAAI Conferences

Anomaly detection methods abound and are used extensively in streaming settings in a wide variety of domains. But a strength can also be a weakness; given the vast number of methods, how can one select the best method for their application? Unfortunately, there is no one best way for all domains. Existing literature is focused on creating new anomaly detection methods or creating large frameworks for experimenting with multiple methods at the same time. As the literature continues to grow, extensive evaluation of every available anomaly detection method is not feasible. To reduce this evaluation burden, in this paper we present a framework to intelligently choose the optimal anomaly detection methods based on the characteristics the time series displays. We provide a comprehensive experimental validation of multiple anomaly detection methods over different time series characteristics to form guidelines. Applying our framework can save time and effort by surfacing the most promising anomaly detection methods instead of experimenting extensively with a rapidly expanding library of anomaly detection methods.


Representation Learning by Reconstructing Neighborhoods

arXiv.org Artificial Intelligence

Since its introduction, unsupervised representation learning has attracted a lot of attention from the research community, as it is demonstrated to be highly effective and easy-to-apply in tasks such as dimension reduction, clustering, visualization, information retrieval, and semi-supervised learning. In this work, we propose a novel unsupervised representation learning framework called neighbor-encoder, in which domain knowledge can be easily incorporated into the learning process without modifying the general encoder-decoder architecture of the classic autoencoder.In contrast to autoencoder, which reconstructs the input data itself, neighbor-encoder reconstructs the input data's neighbors. As the proposed representation learning problem is essentially a neighbor reconstruction problem, domain knowledge can be easily incorporated in the form of an appropriate definition of similarity between objects. Based on that observation, our framework can leverage any off-the-shelf similarity search algorithms or side information to find the neighbor of an input object. Applications of other algorithms (e.g., association rule mining) in our framework are also possible, given that the appropriate definition of neighbor can vary in different contexts. We have demonstrated the effectiveness of our framework in many diverse domains, including images, text, and time series, and for various data mining tasks including classification, clustering, and visualization. Experimental results show that neighbor-encoder not only outperforms autoencoder in most of the scenarios we consider, but also achieves the state-of-the-art performance on text document clustering.


Paying Attention to Attention: Highlighting Influential Samples in Sequential Analysis

arXiv.org Machine Learning

In (Yang et al. 2016), a hierarchical attention network (HAN) is created for document classification. The attention layer can be used to visualize text influential in classifying the document, thereby explaining the model's prediction. We successfully applied HAN to a sequential analysis task in the form of real-time monitoring of turn taking in conversations. However, we discovered instances where the attention weights were uniform at the stopping point (indicating all turns were equivalently influential to the classifier), preventing meaningful visualization for real-time human review or classifier improvement. We observed that attention weights for turns fluctuated as the conversations progressed, indicating turns had varying influence based on conversation state. Leveraging this observation, we develop a method to create more informative real-time visuals (as confirmed by human reviewers) in cases of uniform attention weights using the changes in turn importance as a conversation progresses over time.


Admissible Time Series Motif Discovery with Missing Data

arXiv.org Artificial Intelligence

The discovery of time series motifs has emerged as one of the most useful primitives in time series data mining. Researchers have shown its utility for exploratory data mining, summarization, visualization, segmentation, classification, clustering, and rule discovery. Although there has been more than a decade of extensive research, there is still no technique to allow the discovery of time series motifs in the presence of missing data, despite the well-documented ubiquity of missing data in scientific, industrial, and medical datasets. In this work, we introduce a technique for motif discovery in the presence of missing data. We formally prove that our method is admissible, producing no false negatives. We also show that our method can piggy-back off the fastest known motif discovery method with a small constant factor time/space overhead. We will demonstrate our approach on diverse datasets with varying amounts of missing data