Mooney, R.

Symbolic and neural learning algorithms: An experimental comparison


Despite the fact that many symbolic and neural network (connectionist) learning algorithms address the same problem of learning from classified examples, very little is known regarding their comparative strengths and weaknesses. Experiments comparing the ID3 symbolic learning algorithm with the perceptron and backpropagation neural learning algorithms have been performed using five large, real-world data sets. Overall, backpropagation performs slightly better than the other two algorithms in terms of classification accuracy on new examples, but takes much longer to train. Also analyzed empirically are the effects of (1) the amount of training data, (2) imperfect training examples, and (3) the encoding of the desired outputs.

Explanation-based learning: An alternative view


In the last issue of this journal Mitchell, Keller, and Kedar-Cabelli presented a unifying framework for the explanation-based approach to machine learning. While it works well for a number of systems, the framework does not adequately capture certain aspects of the systems under development by the explanation-based learning group at Illinois. The primary inadequacies arise in the treatment of concept operationality, organization of knowledge into schemata, and learning from observation. This paper outlines six specific problems with the previously proposed framework and presents an alternative generalization method to perform explanation-based learning of new concepts.