Goto

Collaborating Authors

McGuinness, Deborah L.


Leveraging Clinical Context for User-Centered Explainability: A Diabetes Use Case

arXiv.org Artificial Intelligence

Academic advances of AI models in high-precision domains, like healthcare, need to be made explainable in order to enhance real-world adoption. Our past studies and ongoing interactions indicate that medical experts can use AI systems with greater trust if there are ways to connect the model inferences about patients to explanations that are tied back to the context of use. Specifically, risk prediction is a complex problem of diagnostic and interventional importance to clinicians wherein they consult different sources to make decisions. To enable the adoption of the ever improving AI risk prediction models in practice, we have begun to explore techniques to contextualize such models along three dimensions of interest: the patients' clinical state, AI predictions about their risk of complications, and algorithmic explanations supporting the predictions. We validate the importance of these dimensions by implementing a proof-of-concept (POC) in type-2 diabetes (T2DM) use case where we assess the risk of chronic kidney disease (CKD) - a common T2DM comorbidity. Within the POC, we include risk prediction models for CKD, post-hoc explainers of the predictions, and other natural-language modules which operationalize domain knowledge and CPGs to provide context. With primary care physicians (PCP) as our end-users, we present our initial results and clinician feedback in this paper. Our POC approach covers multiple knowledge sources and clinical scenarios, blends knowledge to explain data and predictions to PCPs, and received an enthusiastic response from our medical expert.


Geospatial Reasoning with Shapefiles for Supporting Policy Decisions

arXiv.org Artificial Intelligence

Policies are authoritative assets that are present in multiple domains to support decision-making. They describe what actions are allowed or recommended when domain entities and their attributes satisfy certain criteria. It is common to find policies that contain geographical rules, including distance and containment relationships among named locations. These locations' polygons can often be found encoded in geospatial datasets. We present an approach to transform data from geospatial datasets into Linked Data using the OWL, PROV-O, and GeoSPARQL standards, and to leverage this representation to support automated ontology-based policy decisions. We applied our approach to location-sensitive radio spectrum policies to identify relationships between radio transmitters coordinates and policy-regulated regions in Census.gov datasets. Using a policy evaluation pipeline that mixes OWL reasoning and GeoSPARQL, our approach implements the relevant geospatial relationships, according to a set of requirements elicited by radio spectrum domain experts.


Semantic Modeling for Food Recommendation Explanations

arXiv.org Artificial Intelligence

With the increased use of AI methods to provide recommendations in the health, specifically in the food dietary recommendation space, there is also an increased need for explainability of those recommendations. Such explanations would benefit users of recommendation systems by empowering them with justifications for following the system's suggestions. We present the Food Explanation Ontology (FEO) that provides a formalism for modeling explanations to users for food-related recommendations. FEO models food recommendations, using concepts from the explanation domain to create responses to user questions about food recommendations they receive from AI systems such as personalized knowledge base question answering systems. FEO uses a modular, extensible structure that lends itself to a variety of explanations while still preserving important semantic details to accurately represent explanations of food recommendations. In order to evaluate this system, we used a set of competency questions derived from explanation types present in literature that are relevant to food recommendations. Our motivation with the use of FEO is to empower users to make decisions about their health, fully equipped with an understanding of the AI recommender systems as they relate to user questions, by providing reasoning behind their recommendations in the form of explanations.


Applying Personal Knowledge Graphs to Health

arXiv.org Artificial Intelligence

Knowledge-driven systems for decision-making in health care applications are powerful tools to help provide actionable and explainable insights to patients and practitioners. In such systems, knowledge about the particular patient - current condition, historical ailments, etc. - is central to enable personalized health care. An example of such a system for personalized health care is a diet and lifestyle decision-making tool for diabetic patients. This system may utilize knowledge from several domain-specific knowledge graphs (KGs), such as a KG of diabetes health care guidelines from the American Diabetes Association and a KG of food and nutrition such as FoodKG [4]. Knowledge about a particular patient is used here to perform context-aware reasoning and personalization of down-stream applications. For example, what the system recommends as a "healthy" meal may differ for among patients based on personal aspects like their current weight or exercise habits. To facilitate reasoning and decision-making based on personal context, such systems can benefit from integrating personal knowledge about the patient. This extended abstract presents a brief review of existing work surrounding the concept of personal knowledge graphs (PKG), how they could be integrated into personalized healthcare as personal health knowledge graphs (PHKG), and the key gaps in existing literature that must be addressed to realize their full potential.


Commonsense Knowledge Mining from Term Definitions

arXiv.org Artificial Intelligence

Commonsense knowledge has proven to be beneficial to a variety of application areas, including question answering and natural language understanding. Previous work explored collecting commonsense knowledge triples automatically from text to increase the coverage of current commonsense knowledge graphs. We investigate a few machine learning approaches to mining commonsense knowledge triples using dictionary term definitions as inputs and provide some initial evaluation of the results. We start from extracting candidate triples using part-of-speech tag patterns from text, and then compare the performance of three existing models for triple scoring. Our experiments show that term definitions contain some valid and novel commonsense knowledge triples for some semantic relations, and also indicate some challenges with using existing triple scoring models.


Dimensions of Commonsense Knowledge

arXiv.org Artificial Intelligence

Commonsense knowledge is essential for many AI applications, including those in natural language processing, visual processing, and planning. Consequently, many sources that include commonsense knowledge have been designed and constructed over the past decades. Recently, the focus has been on large text-based sources, which facilitate easier integration with neural (language) models and application on textual tasks, typically at the expense of the semantics of the sources. Such practice prevents the harmonization of these sources, understanding their coverage and gaps, and may hinder the semantic alignment of their knowledge with downstream tasks. Efforts to consolidate commonsense knowledge have yielded partial success, but provide no clear path towards a comprehensive consolidation of existing commonsense knowledge. The ambition of this paper is to organize these sources around a common set of dimensions of commonsense knowledge. For this purpose, we survey a wide range of popular commonsense sources with a special focus on their relations. We consolidate these relations into 13 knowledge dimensions, each abstracting over more specific relations found in sources. This consolidation allows us to unify the separate sources and to compute indications of their coverage, overlap, and gaps with respect to the knowledge dimensions. Moreover, we analyze the impact of each dimension on downstream reasoning tasks that require commonsense knowledge, observing that the temporal and desire/goal dimensions are very beneficial for reasoning on current downstream tasks, while distinctness and lexical knowledge have little impact. These results reveal focus towards some dimensions in current evaluation, and potential neglect of others.


Exploring and Analyzing Machine Commonsense Benchmarks

arXiv.org Artificial Intelligence

Commonsense question-answering (QA) tasks, in the form of benchmarks, are constantly being introduced for challenging and comparing commonsense QA systems. The benchmarks provide question sets that systems' developers can use to train and test new models before submitting their implementations to official leaderboards. Although these tasks are created to evaluate systems in identified dimensions (e.g. topic, reasoning type), this metadata is limited and largely presented in an unstructured format or completely not present. Because machine common sense is a fast-paced field, the problem of fully assessing current benchmarks and systems with regards to these evaluation dimensions is aggravated. We argue that the lack of a common vocabulary for aligning these approaches' metadata limits researchers in their efforts to understand systems' deficiencies and in making effective choices for future tasks. In this paper, we first discuss this MCS ecosystem in terms of its elements and their metadata. Then, we present how we are supporting the assessment of approaches by initially focusing on commonsense benchmarks. We describe our initial MCS Benchmark Ontology, an extensible common vocabulary that formalizes benchmark metadata, and showcase how it is supporting the development of a Benchmark tool that enables benchmark exploration and analysis.


Explanation Ontology in Action: A Clinical Use-Case

arXiv.org Artificial Intelligence

We addressed the problem of a lack of semantic representation for user-centric explanations and different explanation types in our Explanation Ontology (https://purl.org/heals/eo). Such a representation is increasingly necessary as explainability has become an important problem in Artificial Intelligence with the emergence of complex methods and an uptake in high-precision and user-facing settings. In this submission, we provide step-by-step guidance for system designers to utilize our ontology, introduced in our resource track paper, to plan and model for explanations during the design of their Artificial Intelligence systems. We also provide a detailed example with our utilization of this guidance in a clinical setting.


Explanation Ontology: A Model of Explanations for User-Centered AI

arXiv.org Artificial Intelligence

Explainability has been a goal for Artificial Intelligence (AI) systems since their conception, with the need for explainability growing as more complex AI models are increasingly used in critical, high-stakes settings such as healthcare. Explanations have often added to an AI system in a non-principled, post-hoc manner. With greater adoption of these systems and emphasis on user-centric explainability, there is a need for a structured representation that treats explainability as a primary consideration, mapping end user needs to specific explanation types and the system's AI capabilities. We design an explanation ontology to model both the role of explanations, accounting for the system and user attributes in the process, and the range of different literature-derived explanation types. We indicate how the ontology can support user requirements for explanations in the domain of healthcare. We evaluate our ontology with a set of competency questions geared towards a system designer who might use our ontology to decide which explanation types to include, given a combination of users' needs and a system's capabilities, both in system design settings and in real-time operations. Through the use of this ontology, system designers will be able to make informed choices on which explanations AI systems can and should provide.


Foundations of Explainable Knowledge-Enabled Systems

arXiv.org Artificial Intelligence

Explainability has been an important goal since the early days of Artificial Intelligence. Several approaches for producing explanations have been developed. However, many of these approaches were tightly coupled with the capabilities of the artificial intelligence systems at the time. With the proliferation of AI-enabled systems in sometimes critical settings, there is a need for them to be explainable to end-users and decision-makers. We present a historical overview of explainable artificial intelligence systems, with a focus on knowledge-enabled systems, spanning the expert systems, cognitive assistants, semantic applications, and machine learning domains. Additionally, borrowing from the strengths of past approaches and identifying gaps needed to make explanations user- and context-focused, we propose new definitions for explanations and explainable knowledge-enabled systems.