Results



Strategyproof Peer Selection: Mechanisms, Analyses, and Experiments

AAAI Conferences

We study an important crowdsourcing setting where agents evaluate one another and, based on these evaluations, a subset of agents are selected. This setting is ubiquitous when peer review is used for distributing awards in a team, allocating funding to scientists, and selecting publications for conferences. The fundamental challenge when applying crowdsourcing in these settings is that agents may misreport their reviews of others to increase their chances of being selected. We propose a new strategyproof (impartial) mechanism called Dollar Partition that satisfies desirable axiomatic properties. We then show, using a detailed experiment with parameter values derived from target real world domains, that our mechanism performs better on average, and in the worst case, than other strategyproof mechanisms in the literature.


Generating CP-Nets Uniformly at Random

AAAI Conferences

Conditional preference networks (CP-nets) are a commonly studied compact formalism for modeling preferences. To study the properties of CP-nets or the performance of CP-net algorithms on average, one needs to generate CP-nets in an equiprobable manner. We discuss common problems with naive generation, including sampling bias, which invalidates the base assumptions of many statistical tests and can undermine the results of an experimental study. We provide a novel algorithm for provably generating acyclic CP-nets uniformly at random. Our method is computationally efficient and allows for multi-valued domains and arbitrary bounds on the indegree in the dependency graph.


Using "The Machine Stops" for Teaching Ethics in Artificial Intelligence and Computer Science

AAAI Conferences

A key front for ethical questions in artificial intelligence, and computer science more generally, is teaching students how to engage with the questions they will face in their professional careers based on the tools and technologies we teach them.  In past work (and current teaching) we have advocated for the use of science fiction as an appropriate tool which enables AI researchers to engage students and the public on the current state and potential impacts of AI. We present teaching suggestions for E.M. Forster's 1909 story, "The Machine Stops," to teach topics in computer ethics.  In particular, we use the story to examine ethical issues related to being constantly available for remote contact, physically isolated, and dependent on a machine --- all without mentioning computer games or other media to which students have strong emotional associations. We give a high-level view of common ethical theories and indicate how they inform the questions raised by the story and afford a structure for thinking about how to address them.


Equilibria Under the Probabilistic Serial Rule

AAAI Conferences

The probabilistic serial (PS) rule is a prominent randomized rule for assigning indivisible goods to agents. Although it is well known for its good fairness and welfare properties, it is not strategyproof. In view of this, we address several fundamental questions regarding equilibria under PS. Firstly, we show that Nash deviations under the PS rule can cycle. Despite the possibilities of cycles, we prove that a pure Nash equilibrium is guaranteed to exist under the PS rule. We then show that verifying whether a given profile is a pure Nash equilibrium is coNP-complete, and computing a pure Nash equilibrium is NP-hard. For two agents, we present a linear-time algorithm to compute a pure Nash equilibrium which yields the same assignment as the truthful profile. Finally, we conduct experiments to evaluate the quality of the equilibria that exist under the PS rule, finding that the vast majority of pure Nash equilibria yield social welfare that is at least that of the truthful profile.


Teaching AI Ethics Using Science Fiction

AAAI Conferences

The cultural and political implications of modern AI research are not some far off concern, they are things that affect the world in the here and now. From advanced control systems with advanced visualizations and image processing techniques that drive the machines of the modern military to the slow creep of a mechanized workforce, ethical questions surround us. Part of dealing with these ethical questions is not just speculating on what could be but teaching our students how to engage with these ethical questions. We explore the use of science fiction as an appropriate tool to enable AI researchers to help engage students and the public on the current state and potential impacts of AI.


Computational Aspects of Multi-Winner Approval Voting

AAAI Conferences

We study computational aspects of three prominent voting rules that use approval ballots to elect multiple winners. These rules are satisfaction approval voting, proportional approval voting, and reweighted approval voting. We first show that computing the winner for proportional approval voting is NP-hard, closing a long standing open problem. As none of the rules are strategyproof, even for dichotomous preferences, we study various strategic aspects of the rules. In particular, we examine the computational complexity of computing a best response for both a single agent and a group of agents. In many settings, we show that it is NP-hard for an agent or agents to compute how best to vote given a fixed set of approval ballots from the other agents.


Counting, Ranking, and Randomly Generating CP-Nets

AAAI Conferences

We introduce a method for generating CP-nets uniformly at random. As CP-nets encode a subset of partial orders, ensuring that we generate samples uniformly at random is not a trivial task. We present algorithms for counting CP-nets, ranking and computing the rank of an arbitrary CP-net for a given number of nodes, and generating a CP-net given its rank. We also show how to generate all CP-nets with a given number of nodes.


Fixing a Balanced Knockout Tournament

AAAI Conferences

Balanced knockout tournaments are one of the most common formats for sports competitions, and are also used in elections and decision-making. We consider the computational problem of finding the optimal draw for a particular player in such a tournament. The problem has generated considerable research within AI in recent years. We prove that checking whether there exists a draw in which a player wins is NP-complete, thereby settling an outstanding open problem. Our main result has a number of interesting implications on related counting and approximation problems. We present a memoization-based algorithm for the problem that is faster than previous approaches. Moreover, we highlight two natural cases that can be solved in polynomial time. All of our results also hold for the more general problem of counting the number of draws in which a given player is the winner.


Who is Watching You Eat?

AAAI Conferences

Many of the seminal papers in preference handling have used food preferences as motivating examples for their work. As foodies, the authors find this particularly motivating. While we think that there is both research and commercial potential in preference-based software for restaurants, we believe that serious application of the MPREF community's technology to the problem of personal preference-driven presentation of menus, seating, etc., will require significant further innovation. We broadly survey the current use of preferences in making the dining-out experience more enjoyable, and we look at the states of the art for preference representation and reasoning, and for restaurant software. We illustrate some of our points with a short story.