Collaborating Authors

Ma, Xiaojuan

Human-Centered AI for Data Science: A Systematic Approach Artificial Intelligence

Human-Centered AI (HCAI) refers to the research effort that aims to design and implement AI techniques to support various human tasks, while taking human needs into consideration and preserving human control. In this short position paper, we illustrate how we approach HCAI using a series of research projects around Data Science (DS) works as a case study. The AI techniques built for supporting DS works are collectively referred to as AutoML systems, and their goals are to automate some parts of the DS workflow. We illustrate a three-step systematical research approach (i.e., explore, build, and integrate) and four practical ways of implementation for HCAI systems. We argue that our work is a cornerstone towards the ultimate future of Human-AI Collaboration for DS and beyond, where AI and humans can take complementary and indispensable roles to achieve a better outcome and experience.

Adversarial Imitation Learning from Incomplete Demonstrations Artificial Intelligence

Imitation learning targets deriving a mapping from states to actions, a.k.a. policy, from expert demonstrations. Existing methods for imitation learning typically require any actions in the demonstrations to be fully available, which is hard to ensure in real applications. Though algorithms for learning with unobservable actions have been proposed, they focus solely on state information and overlook the fact that the action sequence could still be partially available and provide useful information for policy deriving. In this paper, we propose a novel algorithm called Action-Guided Adversarial Imitation Learning (AGAIL) that learns a policy from demonstrations with incomplete action sequences, i.e., incomplete demonstrations. The core idea of AGAIL is to separate demonstrations into state and action trajectories, and train a policy with state trajectories while using actions as auxiliary information to guide the training whenever applicable. Built upon the Generative Adversarial Imitation Learning, AGAIL has three components: a generator, a discriminator, and a guide. The generator learns a policy with rewards provided by the discriminator, which tries to distinguish state distributions between demonstrations and samples generated by the policy. The guide provides additional rewards to the generator when demonstrated actions for specific states are available. We compare AGAIL to other methods on benchmark tasks and show that AGAIL consistently delivers comparable performance to the state-of-the-art methods even when the action sequence in demonstrations is only partially available.

Cross-City Transfer Learning for Deep Spatio-Temporal Prediction Artificial Intelligence

Spatio-temporal prediction is a key type of tasks in urban computing, e.g., traffic flow and air quality. Adequate data is usually a prerequisite, especially when deep learning is adopted. However, the development levels of different cities are unbalanced, and still many cities suffer from data scarcity. To address the problem, we propose a novel cross-city transfer learning method for deep spatio-temporal prediction tasks, called RegionTrans. RegionTrans aims to effectively transfer knowledge from a data-rich source city to a data-scarce target city. More specifically, we first learn an inter-city region matching function to match each target city region to a similar source city region. A neural network is designed to effectively extract region-level representation for spatio-temporal prediction. Finally, an optimization algorithm is proposed to transfer learned features from the source city to the target city with the region matching function. Using citywide crowd flow prediction as a demonstration experiment, we verify the effectiveness of RegionTrans. Results show that RegionTrans can outperform the state-of-the-art fine-tuning deep spatio-temporal prediction models by reducing up to 10.7% prediction error.

Geographic Differential Privacy for Mobile Crowd Coverage Maximization

AAAI Conferences

For real-world mobile applications such as location-based advertising and spatial crowdsourcing, a key to success is targeting mobile users that can maximally cover certain locations in a future period. To find an optimal group of users, existing methods often require information about users' mobility history, which may cause privacy breaches. In this paper, we propose a method to maximize mobile crowd's future location coverage under a guaranteed location privacy protection scheme. In our approach, users only need to upload one of their frequently visited locations, and more importantly, the uploaded location is obfuscated using a geographic differential privacy policy. We propose both analytic and practical solutions to this problem. Experiments on real user mobility datasets show that our method significantly outperforms the state-of-the-art geographic differential privacy methods by achieving a higher coverage under the same level of privacy protection.

Ridesourcing Car Detection by Transfer Learning Machine Learning

Ridesourcing platforms like Uber and Didi are getting more and more popular around the world. However, unauthorized ridesourcing activities taking advantages of the sharing economy can greatly impair the healthy development of this emerging industry. As the first step to regulate on-demand ride services and eliminate black market, we design a method to detect ridesourcing cars from a pool of cars based on their trajectories. Since licensed ridesourcing car traces are not openly available and may be completely missing in some cities due to legal issues, we turn to transferring knowledge from public transport open data, i.e, taxis and buses, to ridesourcing detection among ordinary vehicles. We propose a two-stage transfer learning framework. In Stage 1, we take taxi and bus data as input to learn a random forest (RF) classifier using trajectory features shared by taxis/buses and ridesourcing/other cars. Then, we use the RF to label all the candidate cars. In Stage 2, leveraging the subset of high confident labels from the previous stage as input, we further learn a convolutional neural network (CNN) classifier for ridesourcing detection, and iteratively refine RF and CNN, as well as the feature set, via a co-training process. Finally, we use the resulting ensemble of RF and CNN to identify the ridesourcing cars in the candidate pool. Experiments on real car, taxi and bus traces show that our transfer learning framework, with no need of a pre-labeled ridesourcing dataset, can achieve similar accuracy as the supervised learning methods.