Goto

Collaborating Authors

Liu, Jie


Progressive Defense Against Adversarial Attacks for Deep Learning as a Service in Internet of Things

arXiv.org Artificial Intelligence

Nowadays, Deep Learning as a service can be deployed in Internet of Things (IoT) to provide smart services and sensor data processing. However, recent research has revealed that some Deep Neural Networks (DNN) can be easily misled by adding relatively small but adversarial perturbations to the input (e.g., pixel mutation in input images). One challenge in defending DNN against these attacks is to efficiently identifying and filtering out the adversarial pixels. The state-of-the-art defense strategies with good robustness often require additional model training for specific attacks. To reduce the computational cost without loss of generality, we present a defense strategy called a progressive defense against adversarial attacks (PDAAA) for efficiently and effectively filtering out the adversarial pixel mutations, which could mislead the neural network towards erroneous outputs, without a-priori knowledge about the attack type. We evaluated our progressive defense strategy against various attack methods on two well-known datasets. The result shows it outperforms the state-of-the-art while reducing the cost of model training by 50% on average.


Adaptive Neural Network-Based Approximation to Accelerate Eulerian Fluid Simulation

arXiv.org Machine Learning

The Eulerian fluid simulation is an important HPC application. The neural network has been applied to accelerate it. The current methods that accelerate the fluid simulation with neural networks lack flexibility and generalization. In this paper, we tackle the above limitation and aim to enhance the applicability of neural networks in the Eulerian fluid simulation. We introduce Smartfluidnet, a framework that automates model generation and application. Given an existing neural network as input, Smartfluidnet generates multiple neural networks before the simulation to meet the execution time and simulation quality requirement. During the simulation, Smartfluidnet dynamically switches the neural networks to make the best efforts to reach the user requirement on simulation quality. Evaluating with 20,480 input problems, we show that Smartfluidnet achieves 1.46x and 590x speedup comparing with a state-of-the-art neural network model and the original fluid simulation respectively on an NVIDIA Titan X Pascal GPU, while providing better simulation quality than the state-of-the-art model.


Triaging moderate COVID-19 and other viral pneumonias from routine blood tests

arXiv.org Machine Learning

The COVID-19 is sweeping the world with deadly consequences. Its contagious nature and clinical similarity to other pneumonias make separating subjects contracted with COVID-19 and non-COVID-19 viral pneumonia a priority and a challenge. However, COVID-19 testing has been greatly limited by the availability and cost of existing methods, even in developed countries like the US. Intrigued by the wide availability of routine blood tests, we propose to leverage them for COVID-19 testing using the power of machine learning. Two proven-robust machine learning model families, random forests (RFs) and support vector machines (SVMs), are employed to tackle the challenge. Trained on blood data from 208 moderate COVID-19 subjects and 86 subjects with non-COVID-19 moderate viral pneumonia, the best result is obtained in an SVM-based classifier with an accuracy of 84%, a sensitivity of 88%, a specificity of 80%, and a precision of 92%. The results are found explainable from both machine learning and medical perspectives. A privacy-protected web portal is set up to help medical personnel in their practice and the trained models are released for developers to further build other applications. We hope our results can help the world fight this pandemic and welcome clinical verification of our approach on larger populations.


Stochastic Learning for Sparse Discrete Markov Random Fields with Controlled Gradient Approximation Error

arXiv.org Machine Learning

We study the $L_1$-regularized maximum likelihood estimator/estimation (MLE) problem for discrete Markov random fields (MRFs), where efficient and scalable learning requires both sparse regularization and approximate inference. To address these challenges, we consider a stochastic learning framework called stochastic proximal gradient (SPG; Honorio 2012a, Atchade et al. 2014,Miasojedow and Rejchel 2016). SPG is an inexact proximal gradient algorithm [Schmidtet al., 2011], whose inexactness stems from the stochastic oracle (Gibbs sampling) for gradient approximation - exact gradient evaluation is infeasible in general due to the NP-hard inference problem for discrete MRFs [Koller and Friedman, 2009]. Theoretically, we provide novel verifiable bounds to inspect and control the quality of gradient approximation. Empirically, we propose the tighten asymptotically (TAY) learning strategy based on the verifiable bounds to boost the performance of SPG.


FLAME: A Self-Adaptive Auto-labeling System for Heterogeneous Mobile Processors

arXiv.org Machine Learning

How to accurately and efficiently label data on a mobile device is critical for the success of training machine learning models on mobile devices. Auto-labeling data on mobile devices is challenging, because data is usually incrementally generated and there is possibility of having unknown labels. Furthermore, the rich hardware heterogeneity on mobile devices creates challenges on efficiently executing auto-labeling workloads. In this paper, we introduce Flame, an auto-labeling system that can label non-stationary data with unknown labels. Flame includes a runtime system that efficiently schedules and executes auto-labeling workloads on heterogeneous mobile processors. Evaluating Flame with eight datasets on a smartphone, we demonstrate that Flame enables auto-labeling with high labeling accuracy and high performance.


Bayesian Estimation of Latently-grouped Parameters in Undirected Graphical Models

Neural Information Processing Systems

In large-scale applications of undirected graphical models, such as social networks and biological networks, similar patterns occur frequently and give rise to similar parameters. In this situation, it is beneficial to group the parameters for more efficient learning. We show that even when the grouping is unknown, we can infer these parameter groups during learning via a Bayesian approach. We impose a Dirichlet process prior on the parameters. Simulations show that both algorithms outperform conventional maximum likelihood estimation (MLE).


Flow Rate Control in Smart District Heating Systems Using Deep Reinforcement Learning

arXiv.org Artificial Intelligence

At high latitudes, many cities adopt a centralized heating system to improve the energy generation efficiency and to reduce pollution. In multi-tier systems, so-called district heating, there are a few efficient approaches for the flow rate control during the heating process. In this paper, we describe the theoretical methods to solve this problem by deep reinforcement learning and propose a cloud-based heating control system for implementation. A real-world case study shows the effectiveness and practicability of the proposed system controlled by humans, and the simulated experiments for deep reinforcement learning show about 1985.01 gigajoules of heat quantity and 42276.45 tons of water are saved per hour compared with manual control.


Model Embedded DRL for Intelligent Greenhouse Control

arXiv.org Machine Learning

Greenhouse environment is the key to influence crops production. However, it is difficult for classical control methods to give precise environment setpoints, such as temperature, humidity, light intensity and carbon dioxide concentration for greenhouse because it is uncertain nonlinear system. Therefore, an intelligent close loop control framework based on model embedded deep reinforcement learning (MEDRL) is designed for greenhouse environment control. Specifically, computer vision algorithms are used to recognize growing periods and sex of crops, followed by the crop growth models, which can be trained with different growing periods and sex. These model outputs combined with the cost factor provide the setpoints for greenhouse and feedback to the control system in real-time. The whole MEDRL system has capability to conduct optimization control precisely and conveniently, and costs will be greatly reduced compared with traditional greenhouse control approaches.


Creating Auxiliary Representations from Charge Definitions for Criminal Charge Prediction

arXiv.org Artificial Intelligence

Charge prediction, determining charges for criminal cases by analyzing the textual fact descriptions, is a promising technology in legal assistant systems. In practice, the fact descriptions could exhibit a significant intra-class variation due to factors like nonnormative use of language, which makes the prediction task very challenging, especially for charge classes with too few samples to cover the expression variation. In this work, we explore to use the charge definitions from criminal law to alleviate this issue. The key idea is that the expressions in a fact description should have corresponding formal terms in charge definitions, and those terms are shared across classes and could account for the diversity in the fact descriptions. Thus, we propose to create auxiliary fact representations from charge definitions to augment fact descriptions representation. The generated auxiliary representations are created through the interaction of fact description with the relevant charge definitions and terms in those definitions by integrated sentence-and word-level attention scheme. Experimental results on two datasets show that our model achieves significant improvement than baselines, especially for classes with few samples. Introduction The task of charge prediction is to determine appropriate charges, such as theft, seizing or robbery, for criminal cases by analyzing the textual fact descriptions.


Single-Path Mobile AutoML: Efficient ConvNet Design and NAS Hyperparameter Optimization

arXiv.org Machine Learning

Can we reduce the search cost of Neural Architecture Search (NAS) from days down to only few hours? NAS methods automate the design of Convolutional Networks (ConvNets) under hardware constraints and they have emerged as key components of AutoML frameworks. However, the NAS problem remains challenging due to the combinatorially large design space and the significant search time (at least 200 GPU-hours). In this work, we alleviate the NAS search cost down to less than 3 hours, while achieving state-of-the-art image classification results under mobile latency constraints. We propose a novel differentiable NAS formulation, namely Single-Path NAS, that uses one single-path over-parameterized ConvNet to encode all architectural decisions based on shared convolutional kernel parameters, hence drastically decreasing the search overhead. Single-Path NAS achieves state-of-the-art top-1 ImageNet accuracy (75.62%), hence outperforming existing mobile NAS methods in similar latency settings (~80ms). In particular, we enhance the accuracy-runtime trade-off in differentiable NAS by treating the Squeeze-and-Excitation path as a fully searchable operation with our novel single-path encoding. Our method has an overall cost of only 8 epochs (24 TPU-hours), which is up to 5,000x faster compared to prior work. Moreover, we study how different NAS formulation choices affect the performance of the designed ConvNets. Furthermore, we exploit the efficiency of our method to answer an interesting question: instead of empirically tuning the hyperparameters of the NAS solver (as in prior work), can we automatically find the hyperparameter values that yield the desired accuracy-runtime trade-off? We open-source our entire codebase at: https://github.com/dstamoulis/single-path-nas.