Plotting

 Liu, Di


FAT: An In-Memory Accelerator with Fast Addition for Ternary Weight Neural Networks

arXiv.org Artificial Intelligence

Convolutional Neural Networks (CNNs) demonstrate great performance in various applications but have high computational complexity. Quantization is applied to reduce the latency and storage cost of CNNs. Among the quantization methods, Binary and Ternary Weight Networks (BWNs and TWNs) have a unique advantage over 8-bit and 4-bit quantization. They replace the multiplication operations in CNNs with additions, which are favoured on In-Memory-Computing (IMC) devices. IMC acceleration for BWNs has been widely studied. However, though TWNs have higher accuracy and better sparsity, IMC acceleration for TWNs has limited research. TWNs on existing IMC devices are inefficient because the sparsity is not well utilized, and the addition operation is not efficient. In this paper, we propose FAT as a novel IMC accelerator for TWNs. First, we propose a Sparse Addition Control Unit, which utilizes the sparsity of TWNs to skip the null operations on zero weights. Second, we propose a fast addition scheme based on the memory Sense Amplifier to avoid the time overhead of both carry propagation and writing back the carry to the memory cells. Third, we further propose a Combined-Stationary data mapping to reduce the data movement of both activations and weights and increase the parallelism of memory columns. Simulation results show that for addition operations at the Sense Amplifier level, FAT achieves 2.00X speedup, 1.22X power efficiency and 1.22X area efficiency compared with State-Of-The-Art IMC accelerator ParaPIM. FAT achieves 10.02X speedup and 12.19X energy efficiency compared with ParaPIM on networks with 80% sparsity


Incentive Compatible Pareto Alignment for Multi-Source Large Graphs

arXiv.org Machine Learning

In this paper, we focus on learning effective entity matching models over multi-source large-scale data. For real applications, we relax typical assumptions that data distributions/spaces, or entity identities are shared between sources, and propose a Relaxed Multi-source Large-scale Entity-matching (RMLE) problem. Challenges of the problem include 1) how to align large-scale entities between sources to share information and 2) how to mitigate negative transfer from joint learning multi-source data. What's worse, one practical issue is the entanglement between both challenges. Specifically, incorrect alignments may increase negative transfer; while mitigating negative transfer for one source may result in poorly learned representations for other sources and then decrease alignment accuracy. To handle the entangled challenges, we point out that the key is to optimize information sharing first based on Pareto front optimization, by showing that information sharing significantly influences the Pareto front which depicts lower bounds of negative transfer. Consequently, we proposed an Incentive Compatible Pareto Alignment (ICPA) method to first optimize cross-source alignments based on Pareto front optimization, then mitigate negative transfer constrained on the optimized alignments. This mechanism renders each source can learn based on its true preference without worrying about deteriorating representations of other sources. Specifically, the Pareto front optimization encourages minimizing lower bounds of negative transfer, which optimizes whether and which to align. Comprehensive empirical evaluation results on four large-scale datasets are provided to demonstrate the effectiveness and superiority of ICPA. Online A/B test results at a search advertising platform also demonstrate the effectiveness of ICPA in production environments.


Bringing AI To Edge: From Deep Learning's Perspective

arXiv.org Artificial Intelligence

Edge computing and artificial intelligence (AI), especially deep learning for nowadays, are gradually intersecting to build a novel system, called edge intelligence. However, the development of edge intelligence systems encounters some challenges, and one of these challenges is the \textit{computational gap} between computation-intensive deep learning algorithms and less-capable edge systems. Due to the computational gap, many edge intelligence systems cannot meet the expected performance requirements. To bridge the gap, a plethora of deep learning techniques and optimization methods are proposed in the past years: light-weight deep learning models, network compression, and efficient neural architecture search. Although some reviews or surveys have partially covered this large body of literature, we lack a systematic and comprehensive review to discuss all aspects of these deep learning techniques which are critical for edge intelligence implementation. As various and diverse methods which are applicable to edge systems are proposed intensively, a holistic review would enable edge computing engineers and community to know the state-of-the-art deep learning techniques which are instrumental for edge intelligence and to facilitate the development of edge intelligence systems. This paper surveys the representative and latest deep learning techniques that are useful for edge intelligence systems, including hand-crafted models, model compression, hardware-aware neural architecture search and adaptive deep learning models. Finally, based on observations and simple experiments we conducted, we discuss some future directions.


User Interest and Interaction Structure in Online Forums

AAAI Conferences

We present a new similarity measure tailored to posts in an online forum. Our measure takes into account all the available information about user interest and interaction — the content of posts, the threads in the forum, and the author of the posts. We use this post similarity to build a similarity between users, based on principal coordinate analysis. This allows easy visualization of the user activity as well. Similarity between users has numerous applications, such as clustering or classification. We show that including the author of a post in the post similarity has a smoothing effect on principal coordinate projections. We demonstrate our method on real data drawn from an internal corporate forum, and compare our results to those given by a standard document classification method. We conclude our method gives a more detailed picture of both the local and global network structure.